Search results for " Targeting"
showing 10 items of 146 documents
Odor-induced electrical and calcium signals from olfactory sensory neurons in situ
2018
Electrophysiological recording and optical imaging enable the characterization of membrane and odorant response properties of olfactory sensory neurons (OSNs) in the nasal neuroepithelium. Here we describe a method to record the responses of mammalian OSNs to odorant stimulations in an ex vivo preparation of intact olfactory epithelium. The responses of individual OSNs with defined odorant receptor types can be monitored via patch-clamp recording or calcium imaging.
Conditional Gene-Targeting in Mice: Problems and Solutions.
2018
LBA-06 IMAB362: a novel immunotherapeutic antibody targeting the tight-junction protein component CLAUDIN18.2 in gastric cancer
2016
Modulation of mitochondriotropic properties of cyanine dyes by in organello copper-free click reaction
2017
Cyanine (Cy) dyes show a general propensity to localize in polarized mitochondria. This mitochondriotropism was used to perform a copper-free click reaction in the mitochondria of living cells. The in organello reaction of dyes Cy3 and Cy5 led to a product that was easily traceable by Forster resonance energy transfer (FRET). As determined by confocal laser scanning microscopy, the Cy3-Cy5 conjugate showed enhanced retention in mitochondria, relative to that of the starting compounds. This enhancement of a favorable property can be achieved by synthesis in organello, but not outside mitochondria.
The Protein Corona as a Confounding Variable of Nanoparticle-Mediated Targeted Vaccine Delivery
2018
Nanocarriers (NC) are very promising tools for cancer immunotherapy. Whereas conventional vaccines are based on the administration of an antigen and an adjuvant in an independent fashion, nanovaccines can facilitate cell-specific co-delivery of antigen and adjuvant. Furthermore, nanovaccines can be decorated on their surface with molecules that facilitate target-specific antigen delivery to certain antigen-presenting cell types or tumor cells. However, the target cell-specific uptake of nanovaccines is highly dependent on the modifications of the nanocarrier itself. One of these is the formation of a protein corona around NC after in vivo administration, which may potently affect cell-speci…
A novel rationale for targeting FXI: Insights from the hemostatic microRNA targetome for emerging anticoagulant strategies
2021
Therapeutic targeting of blood coagulation is a challenging task as it interferes with the delicate balance of pro- and anticoagulant activities. Anticoagulants are employed in millions of thrombophilic patients worldwide each year. The treatment and prevention of venous thromboembolism has changed drastically. Traditional vitamin K antagonists are being replaced by direct oral anticoagulants (DOACs), which selectively target coagulation factors Xa or IIa. However for a growing population with comorbidities satisfying therapeutic options are still lacking and the quest for novel therapeutics continues. Recently, targeting factors XI or XII have emerged as new therapeutic strategies. As thes…
Virotherapy in Germany—Recent Activities in Virus Engineering, Preclinical Development, and Clinical Studies
2021
Virotherapy research involves the development, exploration, and application of oncolytic viruses that combine direct killing of cancer cells by viral infection, replication, and spread (oncolysis) with indirect killing by induction of anti-tumor immune responses. Oncolytic viruses can also be engineered to genetically deliver therapeutic proteins for direct or indirect cancer cell killing. In this review—as part of the special edition on “State-of-the-Art Viral Vector Gene Therapy in Germany”—the German community of virotherapists provides an overview of their recent research activities that cover endeavors from screening and engineering viruses as oncolytic cancer therapeutics to their cli…
Lipoproteins LDL versus HDL as nanocarriers to target either cancer cells or macrophages
2020
free open access article 31 p.; International audience; In this work, we have explored natural unmodified low- and high-density lipoproteins (LDL and HDL) as selective delivery vectors in colorectal cancer therapy. We show in vitro in cultured cells and in vivo (NanoSPECT/CT) in the CT-26 mice colorectal cancer model that LDLs are mainly taken up by cancer cells, while HDLs are preferentially taken up by macrophages. We loaded LDLs with cisplatin and HDLs with the heat shock protein-70 inhibitor AC1LINNC, turning them into a pair of “Trojan horses” delivering drugs selectively to their target cells as demonstrated in vitro in human colorectal cancer cells and macrophages, and in vivo. Coupl…
DNA folds threaten genetic stability and can be leveraged for chemotherapy
2020
International audience; Damaging DNA is a current and efficient strategy to fight against cancer cell proliferation. Numerous mechanisms exist to counteract DNA damage, collectively referred to as the DNA damage response (DDR) and which are commonly dysregulated in cancer cells. Precise knowledge of these mechanisms is necessary to optimise chemotherapeutic DNA targeting. New research on DDR has uncovered a series of promising therapeutic targets, proteins and nucleic acids, with application notably via an approach referred to as combination therapy or combinatorial synthetic lethality. In this review, we summarise the cornerstone discoveries which gave way to the DNA being considered as an…
Alternative NF-κB signaling regulates mTEC differentiation from podoplanin-expressing precursors in the cortico-medullary junction
2015
The thymic epithelium forms specialized niches to enable thymocyte differentiation. While the common epithelial progenitor of medullary and cortical thymic epithelial cells (mTECs and cTECs) is well defined, early stages of mTEC lineage specification have remained elusive. Here, we utilized in vivo targeting of mTECs to resolve their differentiation pathways and to determine whether mTEC progenitors participate in thymocyte education. We found that mTECs descend from a lineage committed, podoplanin (PDPN)-expressing progenitor located at the cortico-medullary junction. PDPN(+) junctional TECs (jTECs) represent a distinct TEC population that builds the thymic medulla, but only partially supp…