Search results for " Tissue Engineering"

showing 10 items of 103 documents

Bi-layer PCL/PLA scaffold prepared by melt for interface tissue engineering

2017

The development of porous multilayer devices allow controlling chemical, physical and mechanical properties by tuning the properties of each single layer. For instance, this feature is of main concern for the production of porous devices designed to regenerate diseased zones at the interface of tissue presenting intrinsic anisotropic structures that gradually change from one tissue to another. In this context, synthetic biodegradable polymers commonly used biomedical applications include polylactic acid (PLA) and polycaprolactone (PCL). In this work, a novel bi-layered multiphasic scaffold (BLS) is presented. It is composed by a PLA-layer presenting pore size in the range of 90-110 μm while…

Melt mixingParticulate leachingInterface tissue engineeringPore size gradientFunctionally graded scaffold
researchProduct

Contribution of outgrowth endothelial cells from human peripheral blood on in vivo vascularization of bone tissue engineered constructs based on star…

2009

In the present study we assessed the potential of human outgrowth endothelial cells (OEC), a subpopulation within endothelial progenitor cell cultures, to support the vascularization of a complex tissue engineered construct for bone. OEC cultured on starch polycaprolactone fiber meshes (SPCL) in monoculture retained their endothelial functionality and responded to angiogenic stimulation by VEGF (vascular endothelial growth factor) in fibrin gel-assays in vitro. Co-culture of OEC with human primary osteoblasts (pOB) on SPCL, induced an angiogenic activation of OEC towards microvessel-like structures achieved without additional supplementation with angiogenic growth factors. Effects of co-cul…

Mice SCID02 engineering and technologyBone tissueBone tissue engineeringNeovascularizationMicechemistry.chemical_compoundSubcutaneous TissueImplants ExperimentalTissue engineeringOsteogenesisEndothelial progenitor cells0303 health sciencesIn vivo testTissue ScaffoldsbiologyStarch021001 nanoscience & nanotechnology3. Good healthCell biologyVascular endothelial growth factorDrug CombinationsPhenotypemedicine.anatomical_structureMechanics of MaterialsProteoglycansCollagenmedicine.symptom0210 nano-technologyPolyestersBiophysicsNeovascularization PhysiologicBioengineeringEndothelial progenitor cellBone and BonesFibrinBiomaterials03 medical and health sciencesIn vivomedicineAnimalsHumansCell Proliferation030304 developmental biologyMatrigelScience & TechnologyOsteoblastsTissue EngineeringVascularizationEndothelial CellsCoculture TechniquesGene Expression RegulationchemistryCeramics and Compositesbiology.proteinLamininBiomedical engineeringBiomaterials
researchProduct

Bioactive glass ions as strong enhancers of osteogenic differentiation in human adipose stem cells.

2015

Bioactive glasses are known for their ability to induce osteogenic differentiation of stem cells. To elucidate the mechanism of the osteoinductivity in more detail, we studied whether ionic extracts prepared from a commercial glass S53P4 and from three experimental glasses (2-06, 1-06 and 3-06) are alone sufficient to induce osteogenic differentiation of human adipose stem cells. Cells were cultured using basic medium or osteogenic medium as extract basis. Our results indicate that cells stay viable in all the glass extracts for the whole culturing period, 14 days. At 14 days the mineralization in osteogenic medium extracts was excessive compared to the control. Parallel to the increased mi…

MineralizationMaterials scienceBiomedical EngineeringAdipose tissuechemistry.chemical_elementBiocompatible MaterialsCalciumta3111BiochemistryBone tissue engineeringlaw.inventionBiomaterialsExtracellular matrixlawOsteogenic differentiationHumansBioactive glassMolecular Biologyta217Mesenchymal stem cellCell ProliferationIonsStem CellsMesenchymal stem cellta1182Cell DifferentiationGeneral MedicineIn vitroCell biologychemistryAdipose TissueBioactive glassAlkaline phosphataseGlassStem cellBiotechnologyBiomedical engineeringActa biomaterialia
researchProduct

Biomaterials and bioactive molecules to drive differentiation in striated muscle tissue engineering

2015

International audience; The generation of engineered tissues and organs has entered into the clinical practice in response to the chronic lack of organ donors. In particular, for the skeletal and cardiac muscles the translational potential of tissue engineering approaches has clearly been shown, even though the construction of these tissues lags behind others given the hierarchical, highly organized architecture of striated muscles. Failure of the cardiac tissue leads to cardiovascular diseases, which are the leading cause of death in the developed world (Di Felice et al., 2014). On the other hand, there are many clinical cases where the loss of skeletal muscle due to a traumatic injury, an…

Muscle tissueStriated muscle tissuePathologymedicine.medical_specialtyPhysiology030204 cardiovascular system & hematologyRegenerative MedicineRegenerative medicinelcsh:PhysiologyBiomaterials03 medical and health sciencescardiac tissue engineering0302 clinical medicineTissue engineeringPhysiology (medical)[SDV.BBM] Life Sciences [q-bio]/Biochemistry Molecular BiologyMedicine[SDV.BBM]Life Sciences [q-bio]/Biochemistry Molecular Biologyskeletal muscle030304 developmental biologyDenervation0303 health scienceslcsh:QP1-981Tissue Engineeringbusiness.industryRegeneration (biology)Editorial ArticleSkeletal musclevasculature nicheBiomaterial3. Good healthmedicine.anatomical_structureTraumatic injuryscaffoldscardiac tissue engineering; regenerative medicine; scaffolds; skeletal muscle; stem cell transplantation; vasculature nichebusinessStem Cell Transplantation
researchProduct

High-density ZnO Nanowires as a Reversible Myogenic-Differentiation-Switch

2018

Mesoangioblasts are outstanding candidates for stem-cell therapy and are already being explored in clinical trials. However, a crucial challenge in regenerative medicine is the limited availability of undifferentiated myogenic progenitor cells because growth is typically accompanied by differentiation. Here reversible myogenic-differentiation switching during proliferation is achieved by functionalizing the glass substrate with high-density ZnO nanowires (NWs). Specifically, mesoangioblasts grown on ZnO NWs present a spherical viable undifferentiated cell state without lamellopodia formation during the entire observation time (8 days). Consistently, the myosin heavy chain, typically express…

Myogenic differentiationMaterials scienceCellmuscle differentiation02 engineering and technologyMuscle Development010402 general chemistrySettore BIO/0901 natural sciencesRegenerative medicineZnO nanowireZnO nanowires; mesoangioblasts; muscle differentiation; tissue engineeringTissue engineeringmesoangioblastsMyosinmedicinemesoangioblastGeneral Materials ScienceProgenitor cellNanowiresZno nanowiresSubstrate (chemistry)Cell Differentiation021001 nanoscience & nanotechnology0104 chemical sciencesCell biologymedicine.anatomical_structuretissue engineeringZnO nanowiresZinc Oxide0210 nano-technology
researchProduct

Optimization of a decellularized protocol of porcine tracheas. Long-term effects of cryopreservation. A histological study

2021

[EN] Objective: The aim of this study was to optimize a decellularization protocol in the trachea of Sus scrofa domestica (pig) as well as to study the effects of long-term cryopreservation on the extracellular matrix of decellularized tracheas. Methods: Porcine tracheas were decellularized using Triton X-100, SDC, and SDS alone or in combination. The effect of these detergents on the extracellular matrix characteristics of decellularized porcine tracheas was evaluated at the histological, biomechanical, and biocompatibility level. Morphometric approaches were used to estimate the effect of detergents on the collagen and elastic fibers content as well as on the removal of chondrocytes from …

OctoxynolSwine0206 medical engineeringTracheal stenosisBiomedical EngineeringMedicine (miscellaneous)Bioengineering02 engineering and technologyCryopreservationBiomaterialsAndrology03 medical and health sciences0302 clinical medicineMedicineSDSCryopreservationDecellularizationTissue EngineeringTissue Scaffoldsbusiness.industryTracheal histologyDecellularized tracheasAirway tissue engineeringGeneral Medicine020601 biomedical engineeringTracheal StenosisSus scrofa domesticaExtracellular MatrixTrachea030220 oncology & carcinogenesisFISICA APLICADAbusiness
researchProduct

BIODEGRADABLE POLYASPARTAMIDE-GRAFT-POLYESTER COPOLYMER FOR VASCULAR REGENERATION

2012

PHEA vascular regeneration tissue engineeringSettore CHIM/09 - Farmaceutico Tecnologico Applicativo
researchProduct

Cardiac tissue engineering: a reflection after a decade of hurry

2014

The heart is a perfect machine whose mass is mainly composed of cardiomyocytes, but also fibroblasts, endothelial, smooth muscle, nervous, and immune cells are represented. One thousand million cardiomyocytes are estimated to be lost after myocardial infarction, their loss being responsible for the impairment in heart contractile function (Laflamme and Murry, 2005). The potential success of cardiac cell therapy relies almost completely on the ability of the implanted cells to differentiate toward mature cardiomyocytes. These cells must be able to reinforce the pumping activity of the injured heart in the absence of life-threatening arrhythmias due to electrophysiological incompatibility. Th…

Pathologymedicine.medical_specialtyheart regenerationPhysiologycardiac progenitor cellsClinical uses of mesenchymal stem cellsproto-tissueslcsh:PhysiologyTissue engineeringPhysiology (medical)MedicineInduced pluripotent stem cellStem cell transplantation for articular cartilage repairlcsh:QP1-981business.industryRegeneration (biology)Mesenchymal stem cellOpinion Articletissue engineeringscaffoldsStem cellbusinessNeurosciencecardiac progenitor cells proto-tissues heart regeneration tissue engineering scaffolds biomaterialsbiomaterialsAdult stem cell
researchProduct

Composites poly-lactic acid - hydroxyapatite scaffolds prepared via Thermally Induced Phase Separation

2013

Poly Lactic Acid Tissue Engineering Phase Separation
researchProduct

Biocompatibility evaluation of PLLA scaffolds for vascular tissue engineering

2015

Poly-L-lactic acid (PLLA), a hemicrystalline material, has been extensively studied in applications of engineered tissues, because it is biodegradable, absorbable and it supports cell attachment and growth. The purpose of this study is to evaluate tissue/ material interactions, neovascularization and the biocompatibility of PLLA by optical and scanning electron microscopy in a model of animal implant. PLLA porous disks were implanted into the dorsal subcutis of BALB/C mice for 1, 2, 3, and 8 weeks. The bioptic samples of excised PLLA and the surrounding tissue were evaluated for inflammatory response and tissue ingrowth. The samples were divided in two halves: one was fixed in neutral buffe…

Poly-L-lactic acid; (PLLA); biocompatibility; immune responce; implant; scaffold; angiogenesisBiocompatibility PLLA scaffolds angiogenesis tissue engineering
researchProduct