Search results for " atomic physics"
showing 10 items of 344 documents
Internal conversion from excited electronic states of $^{229}{\mathrm Th}$ ions
2016
The process of internal conversion from excited electronic states is investigated theoretically for the case of the vacuum-ultraviolet nuclear transition of $^{229}{\mathrm Th}$. Due to the very low transition energy, the $^{229}{\mathrm Th}$ nucleus offers the unique possibility to open the otherwise forbidden internal conversion nuclear decay channel for thorium ions via optical laser excitation of the electronic shell. We show that this feature can be exploited to investigate the isomeric state properties via observation of internal conversion from excited electronic configurations of ${\mathrm Th}^+$ and ${\mathrm Th}^{2+}$ ions. A possible experimental realization of the proposed scena…
Oscillating nuclear electric dipole moments inside atoms
2019
Interaction with the axion dark matter (DM) field generates an oscillating nuclear electric dipole moment (EDM) with a frequency corresponding to the axion's Compton frequency. Within an atom, an oscillating EDM can drive electric dipole transitions in the electronic shell. In the absence of radiation, and if the axion frequency matches a dipole transition, it can promote the electron into the excited state. The excitation events can be detected, for example, via subsequent uorescence or photoionization. Here we calculate the rates of such transitions. For a single light atom and an axion Compton frequency resonant with a transition energy corresponding to 1 eV, the rate is on the order of …
Nuclear Charge Radius of $^{12}$Be
2012
The nuclear charge radius of $^{12}$Be was precisely determined using the technique of collinear laser spectroscopy on the $2s_{1/2}\rightarrow 2p_{1/2, 3/2}$ transition in the Be$^{+}$ ion. The mean square charge radius increases from $^{10}$Be to $^{12}$Be by $\delta ^{10,12} = 0.69(5) \fm^{2}$ compared to $\delta ^{10,11} = 0.49(5) \fm^{2}$ for the one-neutron halo isotope $^{11}$Be. Calculations in the fermionic molecular dynamics approach show a strong sensitivity of the charge radius to the structure of $^{12}$Be. The experimental charge radius is consistent with a breakdown of the N=8 shell closure.
Theory of the Lamb shift and Fine Structure in muonic $\mathrm{^4He}$ ions and the muonic $\mathrm{^3He-^4He}$ Isotope Shift
2016
We provide an up to date summary of the theory contributions to the 2S-2P Lamb shift and the fine structure of the 2P state in the muonic helium ion $(\mathrm{\mu^4He})^+$. This summary serves as the basis for the extraction of the alpha particle charge radius from the muonic helium Lamb shift measurements at the Paul Scherrer Institute, Switzerland. Individual theory contributions needed for a charge radius extraction are compared and compiled into a consistent summary. The influence of the alpha particle charge distribution on the elastic two-photon exchange is studied to take into account possible model-dependencies of the energy levels on the electric form factor of the nucleus. We also…
Opportunities for Fundamental Physics Research with Radioactive Molecules
2023
Molecules containing short-lived, radioactive nuclei are uniquely positioned to enable a wide range of scientific discoveries in the areas of fundamental symmetries, astrophysics, nuclear structure, and chemistry. Recent advances in the ability to create, cool, and control complex molecules down to the quantum level, along with recent and upcoming advances in radioactive species production at several facilities around the world, create a compelling opportunity to coordinate and combine these efforts to bring precision measurement and control to molecules containing extreme nuclei. In this manuscript, we review the scientific case for studying radioactive molecules, discuss recent atomic, mo…
Actinide and lanthanide molecules to search for strong CP-violation
2020
The existence of the fundamental CP-violating interactions inside the nucleus leads to the existence of the nuclear Schiff moment. The Schiff moment potential corresponds to the electric field localized inside the nucleus and directed along its spin. This field can interact with electrons of an atom and induce the permanent electric dipole moment (EDM) of the whole system. The Schiff moment and corresponding electric field are enhanced in the nuclei with the octupole deformation leading to the enhanced atomic EDM. There is also a few-order enhancement of the T,P-violating effects in molecules due to the existence of energetically close levels of opposite parity. We study the Schiff moment e…
Effects of $CP$-violating internucleon interactions in paramagnetic molecules
2020
We demonstrate that electron electric dipole moment experiments with molecules in paramagnetic state are sensitive to $P,T$-violating nuclear forces and other $CP$-violating parameters in the hadronic sector. These experiments, in particular, measure the coupling constant $C_{SP}$ of the $CP$-odd contact semileptonic interaction. We establish relations between $C_{SP}$ and different $CP$-violating hadronic parameters including strength constants of the $CP$-odd nuclear potentials, $CP$-odd pion-nucleon interactions, quark-chromo EDM and QCD vacuum angle. These relations allow us to find limits on various $CP$-odd hadronic parameters.
Evolution of Octupole Deformation in Radium Nuclei from Coulomb Excitation of Radioactive $^{222}$Ra and $^{228}$Ra Beams
2020
There is sparse direct experimental evidence that atomic nuclei can exhibit stable pear shapes arising from strong octupole correlations. In order to investigate the nature of octupole collectivity in radium isotopes, electric octupole ($E3$) matrix elements have been determined for transitions in $^{222,228}$Ra nuclei using the method of sub-barrier, multi-step Coulomb excitation. Beams of the radioactive radium isotopes were provided by the HIE-ISOLDE facility at CERN. The observed pattern of $E$3 matrix elements for different nuclear transitions is explained by describing $^{222}$Ra as pear-shaped with stable octupole deformation, while $^{228}$Ra behaves like an octupole vibrator.
Resonant enhancement of an oscillating electric field in an atom
2018
When an atom is placed into an oscillating electric field with frequency far from atomic resonances, the atomic electrons partly shield this field at the nucleus. It is conjectured that when the frequency of electric field reaches an atomic resonance, the electric field at the nucleus may be significantly enhanced. In this paper, we systematically study the mechanisms of this enhancement and show that it may reach five orders in magnitude in particular cases. As an application, we consider laser-assisted neutron capture in 139-Lanthanum nucleus and screening and resonance enhancement of nuclear electromagnetic transitions by electrons.
Extreme nuclear magnetic resonance: Zero field, single spins, dark matter….
2019
An unusual regime for liquid-state nuclear magnetic resonance (NMR) where the magnetic field strength is so low that the $J$-coupling (intramolecular spin-spin) interactions dominate the spin Hamiltonian opens a new paradigm with applications in spectroscopy, quantum control, and in fundamental-physics experiments, including searches for well-motivated dark-matter candidates. An interesting possibility is to bring this kind of "extreme NMR" together with another one---single nuclear spin detected with a single-spin quantum sensor. This would enable single-molecule $J$-spectroscopy.