Search results for " capacitance"
showing 10 items of 38 documents
Photoelectrochemical characterization of amorphous anodic films on Ti-6at.%Si
2013
Abstract The solid state properties of anodic films grown galvanostatically on sputtering-deposited Ti–6at.%Si alloys were studied as a function of the formation voltage (5–40 V). From the photocurrent spectra a band gap of ∼3.4 eV was estimated for all the investigated thicknesses, which is almost coincident with the value measured for amorphous TiO 2 . The photocharacteristics allowed to estimate the flat band potential of the films, which resulted to be more anodic for thicker layers and allowed to evidence a change from n-type semiconducting material to insulator by increasing the formation voltage. A dielectric constant of ∼31 was estimated by differential capacitance measurements. The…
Band gap narrowing and dielectric constant enhancement of (NbxTa(1-x))2O5 by electrochemical nitrogen doping
2018
Abstract Anodic films were grown to 5 V and 50 V on Nb, Ta and Ta-Nb sputtering deposited alloys in 0.1 M ammonium biborate solutions in order to induce N incorporation. Their properties were compared to those of N free anodic films grown to the same formation voltages in 0.1 M NaOH. Photoelectrochemical measurements evidenced the presence of optical transitions at energy lower than the band gap of the oxides, attributed to localized states located close to the valence band mobility edge of the films, generated by N 2p orbitals, with consequent narrowing of the band gap. Since N incorporation occurs in the outer 70% of the anodic films, the dependence of the measured photocurrent as a funct…
Erroneous p-type assignment by Hall effect measurements in annealed ZnO films grown on InP substrate
2013
We report on incorrect carrier type identification achieved by Hall effect measurements performed on ZnO films grown by pulsed laser deposition on InP substrates and subsequently annealed for 1 h at 600 C in air. While Hall measurements, after post-growth annealing, reveal a change in the electrical properties of the films, from n-type to p-type, both photocurrent-based and standard C V measurements performed on the same samples show no change in the native n-type doping of the ZnO films. A possible interpretation of the two results is reported. In particular, p-type conductivity observed by Hall effect may be ascribed to a highly conductive thin layer formed during the annealing process at…
On the design of a multiple-output DC/DC converter for the PHI experiment on-board of solar orbiter
2013
Power converters for experiments that have to fly on board space missions (satellite, launchers, etc.) have very stringent requirements due to its use in a very harsh environment. The selection of a suitable topology is therefore not only based on standard requirements but additional more strict ones have also to be fulfilled. This work shows the design procedure followed to build the Power Converter Module (PCM) for the Polarimetric and Helioseismic Imager (SO/PHI), experiment on board the Solar Orbiter Satellite. The selected topology has been a Push-Pull, for a power level of approximately 35 W and with seven output voltages. Galvanic isolation is needed from primary to secondary, but no…
A cylindrical GEM detector with analog readout for the BESIII experiment
2016
Abstract A cylindrical GEM detector with analog readout is under development for the upgrade of the Inner Tracker of the BESIII experiment at IHEP (Beijing). The new detector will match the requirements for momentum resolution ( σ pt / p t ~ 0.5 % at 1 GeV) and radial resolution ( σ xy ~ 120 μ m ) of the existing drift chamber and will improve significantly the spatial resolution along the beam direction ( σ z ~ 150 μ m ) with very small material budget (less than 1.5% of X 0 ). With respect to the state of the art the following innovations will be deployed: a lighter mechanical structure based on Rohacell, a new XV anode readout plane with jagged strip layout to reduce the parasitic capaci…
Quantum capacitance: a microscopic derivation
2010
We start from microscopic approach to many body physics and show the analytical steps and approximations required to arrive at the concept of quantum capacitance. These approximations are valid only in the semi-classical limit and the quantum capacitance in that case is determined by Lindhard function. The effective capacitance is the geometrical capacitance and the quantum capacitance in series, and this too is established starting from a microscopic theory.
Josephson junctions and SQUIDs based on artificial grain boundaries in Bi 2 Sr 2 Ca 2 Cu 3 O 10 -thin films
1996
ABSTRACT High quality thin films of Bi2 Sr Ca2 Cu3 0 with critical temperatures of 95 K were used to prepare grainboundary josephson junctions on commercial 36.8° SrTiOg-bicrystal substrates. IR-products of 50 pV at 77 Kand 0.7 mV at 4.2 K have been reached. For temperatures higher than 50 K the current-voltage curves of thejunctions can be well described by the resistively shunted junction (RSJ) model and show no hysteresis. Fromthe hysteretic behavior at low temperature we estimate a junction capacitance of 2ljiF/cm2. The Fraunhoferpattern of the critical current in an external applied field shows, that the junctions are inhomogeneous on a pm scale. The SQUID modulation of a 30 x 40 pm2 w…
Design of MOS Current Mode Logic Gates – Computing the Limits of Voltage Swing and Bias Current
2005
Minimizing a quality metric for an MCML gate, such as power-delay product or energy-delay product, requires solving a system of nonlinear equations subject to constraints on both bias current and voltage swing. In this paper, we will show that the limits of the swing and the bias current are affected by the constraints on maximum area and maximum delay. Moreover, methods for computing such limits are presented.
A Design Methodology for Low-Power MCML Ring Oscillators
2007
In this paper, a low-power design method for MCML based ring oscillators is presented. The proposed method takes into account the parasitic capacitances of the MOS transistors. To validate it, some ring oscillators with different oscillation frequencies were designed in a 0.18 mum CMOS technology. SPICE simulations demonstrate the effectiveness of the design method.
<title>Scanning probe microscopy of nanocrystalline iridium oxide thin films</title>
2003
Structural investigations of nanocrystalline iridium oxide thin films, prepared by dc magnetron sputtering technique were performed by scanning probe microscopy (SPM). SPM studies, using both atomic force microscopy (AFM) and scanning tunnelling microscopy (STM), indicate that the thin films are composed of grains with a size of about 20-50 nm. Fine crystallinity and small RMS microroughness of the films, being well below 2 nm, make iridium oxide thin films promising candidates for nanolithographic applications. The possibility to perform nanolithograhpic processes at a scale of less than 150 nm was successfully examined in AFM and STM modes.© (2003) COPYRIGHT SPIE--The International Societ…