Search results for " characterization"

showing 10 items of 310 documents

Passivation-Induced Physicochemical Alterations of the Native Surface Oxide Film on 316L Austenitic Stainless Steel

2019

Time of Flight Secondary Ion Mass Spectroscopy, X-Ray Photoelectron Spectroscopy, in situ Photo-Current Spectroscopy and electrochemical analysis were combined to characterize the physicochemical alterations induced by electrochemical passivation of the surface oxide film providing corrosion resistance to 316L stainless steel. The as-prepared surface is covered by a ~2 nm thick, mixed (Cr(III)-Fe(III)) and bi-layered hydroxylated oxide. The inner layer is highly enriched in Cr(III) and the outer layer less so. Molybdenum is concentrated, mostly as Mo(VI), in the outer layer. Nickel is only present at trace level. These inner and outer layers have band gap values of 3.0 and 2.6-2.7 eV, respe…

Materials sciencePassivation020209 energyOxidechemistry.chemical_elementFOS: Physical sciences02 engineering and technologyApplied Physics (physics.app-ph)Surface Analysisengineering.materialPhysical ChemistryMetallic MaterialsCorrosionBarrier layerchemistry.chemical_compoundPassive Film0202 electrical engineering electronic engineering information engineeringMaterials ChemistryElectrochemistry[CHIM]Chemical SciencesAustenitic stainless steelPassivation Physicochemical Characterization Native Surface Oxide 316L Austenitic Stainless SteelCondensed Matter - Materials ScienceRenewable Energy Sustainability and the EnvironmentMaterials Science (cond-mat.mtrl-sci)Physics - Applied Physics[CHIM.MATE]Chemical Sciences/Material chemistryStainless SteelCondensed Matter PhysicsSurfaces Coatings and FilmsElectronic Optical and Magnetic MaterialsCorrosionNickelSettore ING-IND/23 - Chimica Fisica ApplicatachemistryChemical engineering13. Climate actionMolybdenum[PHYS.COND.CM-MS]Physics [physics]/Condensed Matter [cond-mat]/Materials Science [cond-mat.mtrl-sci]engineeringLayer (electronics)Journal of The Electrochemical Society
researchProduct

Enhanced operational stability through interfacial modification by active encapsulation of perovskite solar cells

2020

Encapsulates are, in general, the passive components of any photovoltaic device that provides the required shielding from the externally stimulated degradation. Here we provide comprehensive physical insight depicting a rather non-trivial active nature, in contrast to the supposedly passive, atomic layer deposition (ALD) grown Al2O3 encapsulate layer on the hybrid perovskite [(FA0.83MA0.17)0.95Cs0.05PbI2.5Br0.5] photovoltaic device having the configuration: glass/FTO/SnO2/perovskite/spiro-OMeTAD/Au/(±) Al2O3. By combining various electrical characterization techniques, our experimental observations indicate that the ALD chemistry produces considerable enhancement of the electronic conductiv…

Materials sciencePhysics and Astronomy (miscellaneous)electrical characterizationContinuous operationperovskitesIonic bonding02 engineering and technologyElectronic structurematerials degradation01 natural sciencesAtomic layer depositionPhotovoltaics0103 physical sciencesMaterialsCèl·lules fotoelèctriquesPerovskite (structure)010302 applied physicsbusiness.industry021001 nanoscience & nanotechnologyDielectric spectroscopycharge transportElectroquímicaphotovoltaicselectrochemical impedance spectroscopyvisual_artElectronic componentsolar cellsvisual_art.visual_art_mediumOptoelectronics0210 nano-technologybusiness
researchProduct

Low melting Metal Catalysed Growth of Tin Disulfide Nanotubes

2009

AbstractWe report here the synthesis of tin disulfide nanotubes by a vapour liquid solid growth using bismuth, a low melting metal, as a catalyst. The reaction was carried out in a single step process by heating SnS2 and bismuth in a horizontal tube furnace at 800oC. TEM analysis allowed proposing a plausible mechanism for the formation of SnS2 nanotubes. Pure material could be obtained by optimizing the reaction based on a product analysis using powder X-ray diffraction (XRD) and high-resolution transmission electron microscopy (HRTEM) combined with energy dispersive X-ray spectroscopy (EDX).

Materials sciencePolymer characterizationAnalytical chemistrychemistry.chemical_elementCatalysisBismuthMetalchemistryChemical engineeringTransmission electron microscopyvisual_artvisual_art.visual_art_mediumTube furnaceTinHigh-resolution transmission electron microscopy
researchProduct

Characterization of blends with polyamide 6 and ethylene acrylic acid copolymers at different acrylic acid content

2002

In this work the morphological, calorimetric, rheological and mechanical behaviour and fourier transmission infrared analysis of blends made with polyamide 6 (PA6) and ethylene acrylic acid copolymers (EAA) containing different amount of acrylic acid were investigated. The results observed from the sample characterizations evidenced as acrylic acid cause a compatibilizing effect between polyethylene and polyamide components with modifications of blends morphology and mechanical behaviour. These effects are enhanced with increase of the acrylic acid content in the copolymer and they were attributed generally to hydrogen bond interactions among the acrylic acid group and the functional groups…

Materials sciencePolymers and Plasticscompatibilizationpolyamide 6Hydrogen bondOrganic Chemistryethylene acrylic acid copolymerCompatibilizationBlendPolyethylenechemistry.chemical_compoundEnd-groupSettore ING-IND/22 - Scienza E Tecnologia Dei MaterialichemistryPolymer chemistryPolyamideCopolymerblendscharacterizationPolymer blendblends; compatibilization; ethylene acrylic acid copolymer; polyamide 6; characterizationAcrylic acid
researchProduct

Structure analysis of side chain liquid crystal polymer films by means of electron microscopy

1987

Abstract Using the combined techniques of electron diffraction, bright and dark field electron microscopy as well as light microscopy, it has been possible to obtain detailed structural information about the arrangement of the smectic layers in a polymethacrylate side chain liquid crystal polymer with a biphenylester as the mesogenic group.

Materials scienceReflection high-energy electron diffractionbusiness.industryPolymer characterizationCryo-electron microscopyGeneral ChemistryCondensed Matter PhysicsDark field microscopyCondensed Matter::Soft Condensed MatterCrystallographyOpticsElectron diffractionLiquid crystalSide chainEnergy filtered transmission electron microscopyGeneral Materials SciencebusinessLiquid Crystals
researchProduct

Growth and Characterization of Anodic Films on Scandium

2013

The anodic behavior of Sc in a slightly alkaline aqueous solution is studied. Electrochemical and capacitance measurements suggest that passive films can be formed on the scandium surface under a high electric field. The formation of these layers occurs at low faradaic efficiency due to oxygen evolution. Photoelectrochemical experiments suggest the formation of a barrier layer with a thickness high enough to hinder external electron photoemission processes and allow the estimation of the bandgap of the films as a function of their formation voltage. The estimated bandgap values were lower than that reported for Sc2O3, suggesting the formation of hydrated phases and/or of a strongly oxygen d…

Materials scienceRenewable Energy Sustainability and the EnvironmentInorganic chemistrychemistry.chemical_elementCondensed Matter Physicsanodic films scandiumelectrochemical characterization photoelectrochemical characterization capacitance measurementsSurfaces Coatings and FilmsElectronic Optical and Magnetic MaterialsAnodeCharacterization (materials science)Settore ING-IND/23 - Chimica Fisica ApplicatachemistryMaterials ChemistryElectrochemistryScandiumJournal of The Electrochemical Society
researchProduct

On the hydro-mechanical behaviour of a lime-treated embankment during wetting and drying cycles

2018

Abstract The paper presents some experimental results obtained on samples extracted from a full-scale embankment obtained by compacting a lime-treated clayey soil. A comprehensive test programme was carried out in order to highlight the improvement of mechanical behaviour induced by lime treatment as well as to assess the durability of the improved material, which may be affected by severe seasonal wetting and drying cycles. Direct shear tests, triaxial compression tests, swelling potential measurement and oedometric tests were performed on samples cured in controlled environmental conditions for at least 18 months. Wetting and drying cycles were applied in a very wide range of suction valu…

Materials scienceWeathering0211 other engineering and technologies020101 civil engineering02 engineering and technologyLime-treated clay0201 civil engineeringmedicineGeotechnical engineeringComputers in Earth SciencesSafety Risk Reliability and QualitySoftening021101 geological & geomatics engineeringShrinkageMicrostructural characterizationGeotechnical Engineering and Engineering GeologyOedometric testDurabilityShear strengthPozzolanic reactionDirect shear testWettingSwellingmedicine.symptomWetting and drying cycleSaturation (chemistry)Geomechanics for Energy and the Environment
researchProduct

Anodic Electro Deposition of CeO2 and Co-Doped CeO2 Thin Films

2013

CeO2 and Co containing CeO2 thin films were deposited on indium tin oxide and stainless steel by anodic electrodeposition. Scanning electron microscopy showed that the films are flat and show globular morphology and cracks resulting from volume shrinking. According to XRD and Raman Spectroscopy pure ceria layers are crystalline, while the presence of Co induces the formation of amorphous films. The good adhesion and the compactness allowed the photoelectrochemical characterization of the films. A band gap value of 2.9 eV was estimated for CeO2, while slightly higher values (̃3.0 eV) were estimated for Co containing films. A mechanism for ceria anodic electrodeposition is proposed and discus…

Materials scienceceo2 electrodepostion band gapRenewable Energy Sustainability and the EnvironmentAnodic electrodeposition Band-gap values Co-doped Globular morphology Indium tin oxide Photoelectrochemical characterization XRDCondensed Matter PhysicsSurfaces Coatings and FilmsElectronic Optical and Magnetic MaterialsAnodeCarbon filmChemical engineeringMaterials ChemistryElectrochemistryThin filmDeposition (chemistry)Co doped
researchProduct

Nanotribological, nanomechanical and interfacial characterization of atomic layer deposited TiO2 on a silicon substrate

2015

Abstract For every coating it is critical that the coatings are sufficiently durable to withstand practical applications and that the films adhere well enough to the substrate. In this paper the nanotribological, nanomechanical and interfacial properties of 15–100 nm thick atomic layer deposited (ALD) TiO 2 coatings deposited at 110–300 °C were studied using a novel combination of nanoscratch and scanning nanowear testing. Thin film wear increased linearly with increasing scanning nanowear load. The film deposited at 300 °C was up to 58±11 %-points more wear-resistant compared to the films deposited at lower temperatures due to higher hardness and crystallinity of the film. Amorphous/nanocr…

Materials sciencenanoindentationta221NanotechnologySubstrate (electronics)Nanomechanical characterizationengineering.materialnanomachiningAtomic layer depositionScanning nanowearCoatingMaterials ChemistryTiO2Composite materialThin filmta216ta214ta114Atomic layer depositionNanotribologySurfaces and InterfacesCondensed Matter PhysicsNanoscratchNanocrystalline materialSurfaces Coatings and FilmsAmorphous solidInterfacial characterizationthin filmsMechanics of MaterialsengineeringCrystalliteLayer (electronics)Wear
researchProduct

INDUCED MODIFICATION OF FLEXURAL TOUGHNESS OF BIO-LIME BASED MORTARS BY ADDITION OF GIANT REED FIBERS

2019

Fibers are often used as reinforcement of brittle materials, like mortars, in order to modify their mechanical behavior; particularly the modification in post-cracking toughness, induced by low elasticity modulus fibers in the artificial stone material, is the main goal in natural fibers mortar manufacturing. In this work Arundo donax L. fibers are used to reinforce lime mortars according to the characteristics of this plant, very commonly available and with high mechanical properties, similar to bamboo, traditionally used in buildings in Spain. Influence of fibers’ length and weight ratio is studied. Particularly, three different fibers’ lengths, 4, 8 and 12 centimeters, and three weight r…

Mechanical characterizationSettore ING-IND/22 - Scienza E Tecnologia Dei MaterialiArundo donax L.Fiber lengthPercentage of fiberNatural fiberFlexural toughne
researchProduct