Search results for " dimensionality"

showing 10 items of 129 documents

Spectral alignment of multi-temporal cross-sensor images with automated kernel canonical correlation analysis

2015

In this paper we present an approach to perform relative spectral alignment between optical cross-sensor acquisitions. The proposed method aims at projecting the images from two different and possibly disjoint input spaces into a common latent space, in which standard change detection algorithms can be applied. The system relies on the regularized kernel canonical correlation analysis transformation (kCCA), which can accommodate nonlinear dependencies between pixels by means of kernel functions. To learn the projections, the method employs a subset of samples belonging to the unchanged areas or to uninteresting radiometric differences. Since the availability of ground truth information to p…

010504 meteorology & atmospheric sciencesFeature extraction0211 other engineering and technologiesRelative spectral alignment02 engineering and technology3107 Atomic and Molecular Physics and Optics01 natural sciencesCross-sensorCanonical correlation analysis1706 Computer Science Applications910 Geography & travelComputers in Earth SciencesEngineering (miscellaneous)021101 geological & geomatics engineering0105 earth and related environmental sciencesMathematicsGround truthbusiness.industry1903 Computers in Earth SciencesKernel methodsPattern recognitionReal imageAtomic and Molecular Physics and OpticsComputer Science Applications10122 Institute of GeographyTransformation (function)Kernel methodChange detectionFeature extraction2201 Engineering (miscellaneous)Artificial intelligencebusinessCanonical correlationChange detectionCurse of dimensionalityISPRS Journal of Photogrammetry and Remote Sensing
researchProduct

Spatially-induced nestedness in a neutral model of phage-bacteria networks

2017

[EN] Ecological networks, both displaying mutualistic or antagonistic interactions, seem to share common structural traits: the presence of nestedness and modularity. A variety of model approaches and hypothesis have been formulated concerning the significance and implications of these properties. In phage-bacteria bipartite infection networks, nestedness seems to be the rule in many different contexts. Modeling the coevolution of a diverse virus¿host ensemble is a difficult task, given the dimensionality and multi parametric nature of a standard continuous approximation. Here, we take a different approach, by using a neutral, toy model of host¿phage interactions on a spatial lattice. Each …

0106 biological sciences0301 basic medicineComputer sciencevirus–host interactionsVirus host interactionsBiologyBit array010603 evolutionary biology01 natural sciencesMicrobiology03 medical and health sciencesVirologyCoevolutionContinuous approximationMulti parametricToy modelEcologyNested networksEcological network030104 developmental biologyBipartite graphNestednessMatching allele dynamicsBiological systemNeutral modelResearch ArticleCurse of dimensionalityCoevolution
researchProduct

Image retrieval system for citizen services using penalized logistic regression models

2020

This paper describes a procedure to deal with large image collections obtained by smart city services based on interaction with citizens providing pictures. The semantic gap between the low-level image features and represented concepts and situations has been addressed using image retrieval techniques. A relevance feedback procedure is proposed for Content-Based Image Retrieval (CBIR) based on the modelling of user responses. One of the novelties of the proposal is that the feedback learning procedure can use the information that citizens themselves can provide when using these services.The proposed algorithm considers the probability of an image belonging to the set of those sought by the …

020203 distributed computingInformation retrievalComputer scienceRelevance feedback02 engineering and technologyLogistic regressionImage (mathematics)Set (abstract data type)Smart city0202 electrical engineering electronic engineering information engineering020201 artificial intelligence & image processingHigh dimensionalityImage retrievalSemantic gapProceedings of the 10th Euro-American Conference on Telematics and Information Systems
researchProduct

2021

Classification approaches that allow to extract logical rules such as decision trees are often considered to be more interpretable than neural networks. Also, logical rules are comparatively easy to verify with any possible input. This is an important part in systems that aim to ensure correct operation of a given model. However, for high-dimensional input data such as images, the individual symbols, i.e. pixels, are not easily interpretable. Therefore, rule-based approaches are not typically used for this kind of high-dimensional data. We introduce the concept of first-order convolutional rules, which are logical rules that can be extracted using a convolutional neural network (CNN), and w…

0209 industrial biotechnologyPixelArtificial neural networkbusiness.industryComputer scienceDecision treePattern recognition02 engineering and technologyConvolutional neural network020901 industrial engineering & automationFilter (video)0202 electrical engineering electronic engineering information engineering020201 artificial intelligence & image processingLocal search (optimization)Artificial intelligencebusinessInterpretabilityCurse of dimensionalityFrontiers in Artificial Intelligence
researchProduct

LipidMS: An R Package for Lipid Annotation in Untargeted Liquid Chromatography-Data Independent Acquisition-Mass Spectrometry Lipidomics.

2018

High resolution LC-MS untargeted lipidomics using data independent acquisition (DIA) has the potential to increase lipidome coverage, as it enables the continuous and unbiased acquisition of all eluting ions. However, the loss of the link between the precursor and the product ions combined with the high dimensionality of DIA data sets hinder accurate feature annotation. Here, we present LipidMS, an R package aimed to confidently identify lipid species in untargeted LC-DIA-MS. To this end, LipidMS combines a coelution score, which links precursor and fragment ions with fragmentation and intensity rules. Depending on the MS evidence reached by the identification function survey, LipidMS provi…

0301 basic medicineChromatographyChemistry010401 analytical chemistryLipidomeMass spectrometry01 natural sciencesLipids0104 chemical sciencesAnalytical Chemistry03 medical and health sciencesR packageAnnotation030104 developmental biologyNon-alcoholic Fatty Liver DiseaseTandem Mass SpectrometryLipidomicsLipidomicsHumansData-independent acquisitionHigh dimensionalityData dependentBiomarkersDatabases ChemicalChromatography LiquidAnalytical chemistry
researchProduct

Single-cell trajectories reconstruction, exploration and mapping of omics data with STREAM

2019

Single-cell transcriptomic assays have enabled the de novo reconstruction of lineage differentiation trajectories, along with the characterization of cellular heterogeneity and state transitions. Several methods have been developed for reconstructing developmental trajectories from single-cell transcriptomic data, but efforts on analyzing single-cell epigenomic data and on trajectory visualization remain limited. Here we present STREAM, an interactive pipeline capable of disentangling and visualizing complex branching trajectories from both single-cell transcriptomic and epigenomic data. We have tested STREAM on several synthetic and real datasets generated with different single-cell techno…

0301 basic medicineEpigenomicsMultifactor Dimensionality ReductionComputer scienceGeneral Physics and Astronomy02 engineering and technologyOmics dataMyoblastsMiceSingle-cell analysisGATA1 Transcription FactorMyeloid CellsLymphocyteslcsh:ScienceData processingMultidisciplinaryQGene Expression Regulation DevelopmentalRNA sequencingCell DifferentiationGenomics021001 nanoscience & nanotechnologyData processingDNA-Binding ProteinsInterferon Regulatory FactorsSingle-Cell Analysis0210 nano-technologyAlgorithmsOmics technologiesSignal TransductionLineage differentiationScienceComputational biologyGeneral Biochemistry Genetics and Molecular BiologyArticle03 medical and health sciencesErythroid CellsAnimalsCell LineageGeneral Chemistrydevelopmental trajectories visualizationHematopoietic Stem CellsPipeline (software)Visualization030104 developmental biologyTheoryofComputation_MATHEMATICALLOGICANDFORMALLANGUAGESCellular heterogeneitySingle cell analysilcsh:QGene expressionTranscriptomeTranscription FactorsNature Communications
researchProduct

2016

AbstractThe different factors involved in the growth process of complex networks imprint valuable information in their observable topologies. How to exploit this information to accurately predict structural network changes is the subject of active research. A recent model of network growth sustains that the emergence of properties common to most complex systems is the result of certain trade-offs between node birth-time and similarity. This model has a geometric interpretation in hyperbolic space, where distances between nodes abstract this optimisation process. Current methods for network hyperbolic embedding search for node coordinates that maximise the likelihood that the network was pro…

0301 basic medicineMultidisciplinaryGeometric analysisComputer sciencebusiness.industryHyperbolic spaceNode (networking)Complex systemNonlinear dimensionality reductionComplex networkTopologyMachine learningcomputer.software_genreNetwork topology01 natural sciences03 medical and health sciences030104 developmental biology0103 physical sciencesEmbeddingArtificial intelligence010306 general physicsbusinesscomputerScientific Reports
researchProduct

Partitioned learning of deep Boltzmann machines for SNP data.

2016

Abstract Motivation Learning the joint distributions of measurements, and in particular identification of an appropriate low-dimensional manifold, has been found to be a powerful ingredient of deep leaning approaches. Yet, such approaches have hardly been applied to single nucleotide polymorphism (SNP) data, probably due to the high number of features typically exceeding the number of studied individuals. Results After a brief overview of how deep Boltzmann machines (DBMs), a deep learning approach, can be adapted to SNP data in principle, we specifically present a way to alleviate the dimensionality problem by partitioned learning. We propose a sparse regression approach to coarsely screen…

0301 basic medicineStatistics and ProbabilityComputer scienceMachine learningcomputer.software_genre01 natural sciencesBiochemistryPolymorphism Single NucleotideMachine Learning010104 statistics & probability03 medical and health sciencessymbols.namesakeJoint probability distributionHumans0101 mathematicsMolecular BiologyStatistical hypothesis testingArtificial neural networkbusiness.industryGene Expression Regulation LeukemicDeep learningUnivariateComputational BiologyManifoldComputer Science ApplicationsData setComputational Mathematics030104 developmental biologyComputingMethodologies_PATTERNRECOGNITIONComputational Theory and MathematicsLeukemia MyeloidBoltzmann constantsymbolsData miningArtificial intelligencebusinesscomputerSoftwareCurse of dimensionalityBioinformatics (Oxford, England)
researchProduct

Assessing Procrastination

2019

Abstract. The short form of the General Procrastination Scale (GPS-K; Klingsieck & Fries, 2012 ; Lay, 1986 ) is a reliable self-report scale measuring general procrastination. The presumed one-dimensional factor structure of the scale, however, has never been examined. Thus, the purposes of this representative study were to examine its dimensionality and factorial invariance across age and sex, and to provide norm values of the German general population. The GPS-K was administered to a representative community sample ( N = 2,527; age range 14–95 years). A confirmatory factor analysis (CFA) was conducted. To explore convergent validity, standardized scales of distress and life satisfact…

050103 clinical psychologyScreening testScale (ratio)business.industrymedia_common.quotation_subject05 social sciencesProcrastination050109 social psychologyFactor structureConvergent validityStatisticsGlobal Positioning System0501 psychology and cognitive sciencesMeasurement invariancebusinessPsychologyApplied Psychologymedia_commonCurse of dimensionalityEuropean Journal of Psychological Assessment
researchProduct

The dimensionality of human's electroencephalogram during sleep.

1991

In order to perform an analysis of nonlinear EEG-dynamics we investigated the EEG of ten male probands during sleep. According to Rechtschaffen and Kales (1968) we scored the sleep-EEG and applied an algorithm, proposed by Grassberger and Proccaccia (1983) to compute the correlation dimension of different sleep stages. The correlation dimension characterizes the dynamics of the EEG signal and estimates the degrees of freedom of the signal under study. We could demonstrate, that the EEG of slow wave sleep stages depicts a dimensionality, which is two units smaller than that of light or REM sleep.

AdultMaleCorrelation dimensionGeneral Computer Sciencemedia_common.quotation_subjectModels NeurologicalSleep REMElectroencephalographymedicineHumansSlow-wave sleepmedia_commonSleep Stagesmedicine.diagnostic_testbusiness.industryPattern recognitionElectroencephalographyArtificial intelligenceSleep StagesSpectrum analysisbusinessPsychologySleepBiotechnologyCurse of dimensionalityVigilance (psychology)Biological cybernetics
researchProduct