Search results for " electrodialysis"
showing 10 items of 114 documents
Investigation of electrode material – redox couple systems for reverse electrodialysis processes. Part II: Experiments in a stack with 10–50 cell pai…
2013
Abstract The performances of reverse electrodialysis depend on several factors, including the nature of the electrode material and of the redox processes adopted to make possible the conversion between chemical potential and electric power. In this paper the possible utilization of various redox processes (reduction/oxidation of iron species, oxidation and reduction of water, oxidation of chlorine and reduction of water) was studied in a stack equipped with 10–50 cell pairs and by focused electrolyses in a three compartment cell. The effect of selected redox processes on power density output and eventual contamination of saline solutions flowing in the stack was evaluated in detail. The eff…
Application of reverse electrodialysis to site-specific types of saline solutions: A techno-economic assessment
2019
Abstract Salinity gradients are a non-conventional source of renewable energy based on the recovery of the Gibbs free energy related to the mixing of solutions at different concentrations. Reverse Electrodialysis is a promising and innovative technology able to convert this energy directly into electric current. The worldwide availability of salinity gradients is limited to those locations where water bodies at different salinity levels are present. The present work analyses a number of different scenarios worldwide, in locations where salinity gradients are naturally available or generated by anthropogenic activities. A techno-economic model of the Reverse Electrodialysis process is presen…
An application of Reverse ElectroDialysis: energy production from produced water
2022
Techno-economic evaluation of Reverse Electrodialysis process in different real environments
2018
Salinity Gradient Power is a promising renewable energy source based on the recovery of the chemical potential released from the mixing of solutions at different concentrations. Natural salinity gradients are extensively available worldwide in natural reservoirs. Reverse Electrodialysis is an innovative technology able to perform a direct conversion of the energy of mixing into electricity. Salinity gradients coming from natural resources or from human activities are worldwide available. In the present work a number of different scenarios, including natural resources (e.g. rivers, seas, lakes and salt ponds), industrial/urban wastes (e.g. brine and treated wastewaters) are analysed. The aim…
Thermal regeneration of ammonium bi-carbonate solutions for closed-loop reverse electrodialysis
2016
Reverse electrodialysis is a novel technology that exploits a salinity gradient to generate electrical energy. The salinity gradient can be available from natural waters such as seawater and river water or they can be artificially generated and used within closed-loop applications. This last option has been recently investigated leading to the development of the RED heat engine concept. In this case, the deployed salinity gradient exiting the RED unit is regenerated in a thermally-driven unit using low-temperature heat, thus being able to convert heat to power within an integrated system. Among the different regeneration alternatives, the use of thermolytic salts has been presented as a pro…
Reverse Electrodialysis with brackish water and concentrated brines: up-scaled pilot plant operating in a real environment
2015
This work focuses on the saling up of the REA Power plant through the installation of two larger RED modules
Valorization of surface-water RO brines via Assisted-Reverse Electrodialysis for minerals recovery: performance analysis and scale-up perspectives
2021
Reverse Osmosis (RO) plays a key role in seawater and brackish water desalination to fulfill the growing demand for fresh water. In recent years, RO has also been more and more adopted for the treatment and potabilization of surface waters, leading to two main problems: (i) the depletion in minerals of the product water, making it aggressive and unsuitable for drinking purposes and (ii) the production of a concentrated brine requiring proper disposal. Permeate remineralization post-treatments include pH adjustment and addition of minerals, such as bicarbonates, calcium and magnesium, which are essential for human health and required to meet drinking water guidelines. However, such solutions…
Reverse electrodialysis – Multi effect distillation heat engine fed by lithium chloride solutions
2019
Salinity Gradient Heat Engines (SG-HEs) have been proposed as a promising technology for converting low-temperature heat into electricity. The SG-HE includes two different processes: (i) a salinity gradient process where the salinity gradient between two solutions is converted into electricity and (ii) a thermal regeneration process where low-grade heat (T<100°C) is used to re-establish the original salinity gradient of the two streams. Among the proposed working solutions, aqueous solution of lithium chloride has been identified as one of the most promising thanks to its remarkable solubility and activity. In this work, a process model to study the performance of a SG-HE constituted by …
Long-run operation of a reverse electrodialysis system fed with wastewaters.
2018
The performance of a Reverse ElectroDialysis (RED) system fed by unconventional wastewater solutions for long operational periods is analysed for the first time. The experimental campaign was divided in a series of five independent long-runs which combined real wastewater solutions with artificial solutions for at least 10 days. The time evolution of electrical variables, gross power output and net power output, considering also pumping losses, was monitored: power density values obtained during the long-runs are comparable to those found in literature with artificial feed solutions of similar salinity. The increase in pressure drops and the development of membrane fouling were the main det…
Development of a process for the treatment of synthetic wastewater without energy inputs using the salinity gradient of wastewaters and a reverse ele…
2019
Abstract Electrochemical processes are considered very effective methods for the treatment of wastewater contaminated by organics resistant to conventional biological processes and various inorganic pollutants. Large sites that treat wastewaters usually deal with a large number of waters often characterized by different salinity contents, that could be potentially used to provide the energy necessary for the electrochemical remediation. Hence, in this work a reverse electrodialysis (RED) process for the treatment of synthetic wastewaters contaminated by organics, without energy inputs, using the salinity gradient of different wastewaters, was studied, for the first time. It was found that t…