Search results for " functional analysis"

showing 10 items of 184 documents

Clarkson-McCarthy inequalities with unitary and isometry orbits

2020

Abstract A refinement of a trace inequality of McCarthy establishing the uniform convexity of the Schatten p-classes for p > 2 is proved: if A , B are two n-by-n matrices, then there exists some pair of n-by-n unitary matrices U , V such that U | A + B 2 | p U ⁎ + V | A − B 2 | p V ⁎ ≤ | A | p + | B | p 2 . A similar statement holds for compact Hilbert space operators. Another improvement of McCarthy's inequality is given via the new operator parallelogramm law, | A + B | 2 ⊕ | A − B | 2 = U 0 ( | A | 2 + | B | 2 ) U 0 ⁎ + V 0 ( | A | 2 + | B | 2 ) V 0 ⁎ for some pair of 2n-by-n isometry matrices U 0 , V 0 .

Trace (linear algebra)010103 numerical & computational mathematics01 natural sciencesUnitary stateConvexityCombinatoricssymbols.namesakeOperator (computer programming)FOS: MathematicsDiscrete Mathematics and Combinatorics0101 mathematicsMathematicsMathematics::Functional AnalysisNumerical AnalysisAlgebra and Number TheoryMathematics::Operator Algebras010102 general mathematicsHilbert spaceUnitary matrixMathematics::Spectral TheoryFunctional Analysis (math.FA)Mathematics - Functional AnalysisIsometrysymbolsComputer Science::Programming LanguagesGeometry and TopologyLinear Algebra and its Applications
researchProduct

Trace and density results on regular trees

2019

We give characterizations for the existence of traces for first order Sobolev spaces defined on regular trees.

Trace (linear algebra)Mathematics::Analysis of PDEsBoundary (topology)01 natural sciencesMeasure (mathematics)Potential theorySet (abstract data type)Combinatoricsregular treeMathematics - Metric Geometry0103 physical sciencesEuclidean geometryClassical Analysis and ODEs (math.CA)FOS: Mathematics0101 mathematicsMathematicsdensityMathematics::Functional Analysis010102 general mathematicsMetric Geometry (math.MG)Functional Analysis (math.FA)Sobolev spaceMathematics - Functional AnalysisMathematics - Classical Analysis and ODEs010307 mathematical physicsTree (set theory)46E35 30L99funktionaalianalyysiAnalysisboundary traceNewtonian space
researchProduct

Local maximal operators on fractional Sobolev spaces

2016

In this note we establish the boundedness properties of local maximal operators MG on the fractional Sobolev spaces Ws;p(G) whenever G is an open set in Rn, 0 < s < 1 and 1 < p < 1. As an application, we characterize the fractional (s;p)-Hardy inequality on a bounded open set by a Maz'ya-type testing condition localized to Whitney cubes. pq(G) whenever G is an open set in R n , 0 < s < 1 and 1 < p;q <1. Our main focus lies in the mapping properties of MG on a fractional Sobolev space W s;p (G) with 0 < s < 1 and 1 < p < 1, see Section 2 for the denition or (3) for a survey of this space. The intrinsically dened function space W s;p (G) on a given domain G coincides with the trace space F s …

Trace spaceFunction spaceGeneral MathematicsOpen setSpace (mathematics)01 natural sciencesDomain (mathematical analysis)CombinatoricsHardy inequality0103 physical sciencesClassical Analysis and ODEs (math.CA)FOS: Mathematics46E350101 mathematicsfractional Sobolev spaceMathematicsMathematics::Functional Analysista111010102 general mathematicsMathematical analysis42B25 46E35 47H99Functional Analysis (math.FA)Mathematics - Functional AnalysisSobolev spaceSection (category theory)Mathematics - Classical Analysis and ODEsBounded function47H99010307 mathematical physics42B25local maximal operator
researchProduct

Unbounded derivations and *-automorphisms groups of Banach quasi *-algebras

2018

This paper is devoted to the study of unbounded derivations on Banach quasi *-algebras with a particular emphasis to the case when they are infinitesimal generators of one parameter automorphisms groups. Both of them, derivations and automorphisms are considered in a weak sense; i.e., with the use of a certain families of bounded sesquilinear forms. Conditions for a weak *-derivation to be the generator of a *-automorphisms group are given.

Unbounded derivationPure mathematicsAutomorphisms groups and their infinitesimal generatorsInfinitesimalBanach quasi *-algebra01 natural sciencesMathematics::Group Theory*-Automorphisms groups and their infinitesimal generatorSettore MAT/05 - Analisi Matematica0103 physical sciencesFOS: MathematicsAutomorphisms groups and their infinitesimal generators; Banach quasi; Integrability of derivation; Unbounded derivations; Automorphisms groups and their infinitesimal generators; Banach quasi; Integrability of derivation; Unbounded derivationsBanach quasi0101 mathematicsOperator Algebras (math.OA)MathematicsGroup (mathematics)Applied Mathematics010102 general mathematicsIntegrability of derivationMathematics - Operator AlgebrasAutomorphismUnbounded derivationsFunctional Analysis (math.FA)Mathematics - Functional AnalysisBounded function010307 mathematical physicsGenerator (mathematics)
researchProduct

Continuous frames for unbounded operators

2021

Few years ago G\u{a}vru\c{t}a gave the notions of $K$-frame and atomic system for a linear bounded operator $K$ in a Hilbert space $\mathcal{H}$ in order to decompose $\mathcal{R}(K)$, the range of $K$, with a frame-like expansion. These notions are here generalized to the case of a densely defined and possibly unbounded operator on a Hilbert space $A$ in a continuous setting, thus extending what have been done in a previous paper in a discrete framework.

Unbounded operator42C15 47A05 47A63 41A65Pure mathematicsContinuous A-frames Continuous weak A-frames Continuous atomic systems Unbounded operatorsAlgebra and Number TheoryAtomic system010102 general mathematicsHilbert spaceOrder (ring theory)01 natural sciencesBounded operatorFunctional Analysis (math.FA)Mathematics - Functional AnalysisRange (mathematics)symbols.namesakeSettore MAT/05 - Analisi Matematica0103 physical sciencessymbolsFOS: Mathematics0101 mathematics010306 general physicsAnalysisMathematics
researchProduct

Riesz-like bases in rigged Hilbert spaces

2015

The notions of Bessel sequence, Riesz-Fischer sequence and Riesz basis are generalized to a rigged Hilbert space $\D[t] \subset \H \subset \D^\times[t^\times]$. A Riesz-like basis, in particular, is obtained by considering a sequence $\{\xi_n\}\subset \D$ which is mapped by a one-to-one continuous operator $T:\D[t]\to\H[\|\cdot\|]$ into an orthonormal basis of the central Hilbert space $\H$ of the triplet. The operator $T$ is, in general, an unbounded operator in $\H$. If $T$ has a bounded inverse then the rigged Hilbert space is shown to be equivalent to a triplet of Hilbert spaces.

Unbounded operatorMathematics::Classical Analysis and ODEsInverse01 natural sciencesCombinatoricssymbols.namesakeSettore MAT/05 - Analisi Matematica0103 physical sciencesFOS: MathematicsOrthonormal basisRigged Hilbert spaces0101 mathematicsMathematicsBasis (linear algebra)Applied MathematicsOperator (physics)010102 general mathematicsHilbert spaceRigged Hilbert spaceFunctional Analysis (math.FA)Mathematics - Functional AnalysisBounded functionsymbols010307 mathematical physicsAnalysisRiesz basi
researchProduct

On Pietsch measures for summing operators and dominated polynomials

2012

We relate the injectivity of the canonical map from $C(B_{E'})$ to $L_p(\mu)$, where $\mu$ is a regular Borel probability measure on the closed unit ball $B_{E'}$ of the dual $E'$ of a Banach space $E$ endowed with the weak* topology, to the existence of injective $p$-summing linear operators/$p$-dominated homogeneous polynomials defined on $E$ having $\mu$ as a Pietsch measure. As an application we fill the gap in the proofs of some results of concerning Pietsch-type factorization of dominated polynomials.

Unit sphereDiscrete mathematics28C15 46G25 47B10 47L22Mathematics::Functional AnalysisPure mathematicsAlgebra and Number TheoryDiscrete orthogonal polynomialsBanach spaceMeasure (mathematics)Functional Analysis (math.FA)Mathematics - Functional AnalysisClassical orthogonal polynomialsFactorizationOrthogonal polynomialsFOS: MathematicsCanonical mapMathematicsLinear and Multilinear Algebra
researchProduct

Almost square Banach spaces

2014

We single out and study a natural class of Banach spaces -- almost square Banach spaces. In an almost square space we can find, given a finite set $x_1,x_2,\ldots,x_N$ in the unit sphere, a unit vector $y$ such that $\|x_i-y\|$ is almost one. These spaces have duals that are octahedral and finite convex combinations of slices of the unit ball of an almost square space have diameter 2. We provide several examples and characterizations of almost square spaces. We prove that non-reflexive spaces which are M-ideals in their biduals are almost square. We show that every separable space containing a copy of $c_0$ can be renormed to be almost square. A local and a weak version of almost square spa…

Unit sphereMathematics::Functional AnalysisApplied Mathematics010102 general mathematicsBanach spaceSpace (mathematics)01 natural sciencesSquare (algebra)Functional Analysis (math.FA)Separable spaceMathematics - Functional Analysis010101 applied mathematicsCombinatoricsUnit vectorFOS: MathematicsDual polyhedron0101 mathematics46B20 46B04 46B07Finite setAnalysisMathematicsJournal of Mathematical Analysis and Applications
researchProduct

Banach spaces where convex combinations of relatively weakly open subsets of the unit ball are relatively weakly open

2018

We introduce and study Banach spaces which have property CWO, i.e., every finite convex combination of relatively weakly open subsets of their unit ball is open in the relative weak topology of the unit ball. Stability results of such spaces are established, and we introduce and discuss a geometric condition---property (co)---on a Banach space. Property (co) essentially says that the operation of taking convex combinations of elements of the unit ball is, in a sense, an open map. We show that if a finite dimensional Banach space $X$ has property (co), then for any scattered locally compact Hausdorff space $K$, the space $C_0(K,X)$ of continuous $X$-valued functions vanishing at infinity has…

Unit sphereMathematics::Functional AnalysisPure mathematicsWeak topology46B04 46B20General Mathematics010102 general mathematicsBanach spaceHausdorff spaceSpace (mathematics)01 natural sciencesOpen and closed mapsFunctional Analysis (math.FA)Mathematics - Functional AnalysisComplex spaceFOS: MathematicsLocally compact space0101 mathematicsVDP::Mathematics and natural science: 400MathematicsStudia Mathematica
researchProduct

Strongly extreme points and approximation properties

2017

We show that if $x$ is a strongly extreme point of a bounded closed convex subset of a Banach space and the identity has a geometrically and topologically good enough local approximation at $x$, then $x$ is already a denting point. It turns out that such an approximation of the identity exists at any strongly extreme point of the unit ball of a Banach space with the unconditional compact approximation property. We also prove that every Banach space with a Schauder basis can be equivalently renormed to satisfy the sufficient conditions mentioned. In contrast to the above results we also construct a non-symmetric norm on $c_0$ for which all points on the unit sphere are strongly extreme, but …

Unit spherePure mathematicsMathematics::Functional AnalysisApproximation propertyGeneral MathematicsBanach spaceRegular polygonSchauder basisFunctional Analysis (math.FA)Mathematics - Functional Analysis46B20Bounded functionFOS: MathematicsPoint (geometry)Extreme pointMathematics
researchProduct