Search results for " interface"
showing 10 items of 1741 documents
Sourcing on the internet: Examining the relations among different phases of online inquiry
2021
This study examined students’ engagement in sourcing throughout online inquiry, that is, when they specified the information need, formulated search queries, evaluated online texts, and composed a written product. Participants were 167 upper secondary school students. Students completed an online inquiry task in a restricted online environment that utilized authentic online texts. Students’ prior topic knowledge and reading fluency was measured and controlled for in the analysis. The results showed that students engaged in sourcing even in the earliest phases of online inquiry. A sequential regression analysis indicated that the more frequently students engaged in sourcing in specifying the…
Real-time simulation of tissue deformation for the nasal endoscopy simulator (NES).
1999
Endonasal sinus surgery requires a great amount of training before it can be adequately performed. The complicated anatomy involved, the proximity of relevant structures, and the variability of the anatomy due to inborn or iatrogenic variations make several complications possible. Today, cadaver dissections are the "gold standard" for surgical training. To overcome the drawbacks of traditional training methods, the Fraunhofer Institute for Computer Graphics is currently developing a highly interactive medical simulation system for nasal endoscopy and endonasal sinus surgery, in cooperation with the Mainz University Hospital. For the simulation of a rhinoscopic procedure, not only are the re…
Surface charges at the CaF2/water interface allow very fast intermolecular vibrational-energy transfer
2020
Abstract We investigate the dynamics of water in contact with solid calcium fluoride, where at low pH, localized charges can develop upon fluorite dissolution. We use 2D surface‐specific vibrational spectroscopy to quantify the heterogeneity of the interfacial water (D2O) molecules and provide information about the sub‐picosecond vibrational‐energy‐relaxation dynamics at the buried solid/liquid interface. We find that strongly H‐bonded OD groups, with a vibrational frequency below 2500 cm−1, display very rapid spectral diffusion and vibrational relaxation; for weakly H‐bonded OD groups, above 2500 cm−1, the dynamics slows down substantially. Atomistic simulations based on electronic‐structu…
Client Applications and Server-Side Docker for Management of RNASeq and/or VariantSeq Workflows and Pipelines of the GPRO Suite
2023
The GPRO suite is an in-progress bioinformatic project for -omics data analysis. As part of the continued growth of this project, we introduce a client- and server-side solution for comparative transcriptomics and analysis of variants. The client-side consists of two Java applications called “RNASeq” and “VariantSeq” to manage pipelines and workflows based on the most common command line interface tools for RNA-seq and Variant-seq analysis, respectively. As such, “RNASeq” and “VariantSeq” are coupled with a Linux server infrastructure (named GPRO Server-Side) that hosts all dependencies of each application (scripts, databases, and command line interface software). Implementation of the Serv…
Monte Carlo simulations of the solid-liquid transition in hard spheres and colloid-polymer mixtures
2010
Monte Carlo simulations at constant pressure are performed to study coexistence and interfacial properties of the liquid-solid transition in hard spheres and in colloid-polymer mixtures. The latter system is described as a one-component Asakura-Oosawa (AO) model where the polymer's degrees of freedom are incorporated via an attractive part in the effective potential for the colloid-colloid interactions. For the considered AO model, the polymer reservoir packing fraction is eta_p^r=0.1 and the colloid-polymer size ratio is q=sigma_p/\sigma=0.15 (with sigma_p and sigma the diameter of polymers and colloids, respectively). Inhomogeneous solid-liquid systems are prepared by placing the solid fc…
Study of the electronic and atomic structure of thermally treated SrTiO3(110) surfaces
2003
The electronic structure of heated SrTiO3(110) surfaces was investigated with metastable impact electron spectroscopy and ultraviolet photoelectron spectroscopy (He(I). Scanning tunnelling microscopy and atomic force microscopy (AFM) were used to study the topology of the surface. The crystals were heated up to 1000 °C under reducing conditions in ultrahigh vacuum or under oxidizing conditions in synthetic air for 1 h, respectively. Under both conditions microfacetting of the surface is observed. The experimental results are compared with ab initio Hartree-Fock calculations, also presented here, carried out for both ideal and reconstructed SrTiO 3(110) surfaces. The results give direct evid…
Electronic structure of p-type ultraviolet-transparent conducting CuScO2 films
2008
Abstract We investigate the electronic structure of CuScO 2 thin films grown on sapphire and mica substrates by pulsed laser deposition. X-ray diffraction and microanalysis confirm that the films have the expected delafossite crystal structure and stoichiometric proportions. The electronic structure is investigated by means of X-ray and ultraviolet photoelectron spectroscopy. Electronic states in the range 0–1350 eV are identified, making reference to theoretical density-of-states calculations up to 80 eV. Photoelectron spectra near the Fermi energy confirm the p-character of the films. Optical absorption spectroscopy shows that the films are transparent up to 3.7 eV and exhibit an intense …
Pd–M/C (M = Pd, Cu, Pt) Electrocatalysts for Oxygen Reduction Reaction in Alkaline Medium: Correlating the Electronic Structure with Activity
2017
The increasing global needs for clean and renewable energy have fostered the design of new and highly efficient materials for fuel cells applications. In this work, Pd-M (M = Pd, Cu, Pt) and Pt nanoparticles were prepared by a green synthesis method. The carbon-supported nanoparticles were evaluated as electrocatalysts for the oxygen reduction reaction (ORR) in alkaline medium. A comprehensive electronic and structural characterization of these materials was achieved using X-ray diffraction, high-resolution transmission electron microscopy, X-ray photoelectron spectroscopy, and X-ray absorption spectroscopy. Their electrochemical properties were investigated by cyclic voltammetry, while the…
Miscibility of cyanine dyes in two-dimensional aggregates
1995
Mixed aggregates of cyanine dyes at a charged lipid monolayer surface are studied by absorption spectroscopy, fluorescence microscopy and electron diffraction. We show that slight variations of the molecular structure can convert a system from being fully miscible to being immiscible, and also that the concentrations of dyes in the solution and in the crystal may deviate considerably. The different concentration in the solution and crystal was observed for a molecule where force field calculations indicated the existence of two isomers in solution and where probably only one fits into the lattice.
Optical method for predicting the composition of self-assembled monolayers of mixed thiols on surfaces coated with silver nanoparticles.
2012
With a simple optical method, based on UV-vis absorption spectra on glass slides, it is possible to predict the composition of self-assembled monolayers of mixed thiols, grafted on monolayers of silver nanoparticles. Glass slides are modified with the layer-by-layer technique, first forming a monolayer of mercaptopropyltrimethoxysilane, then grafting a monolayer of silver nanoparticles on it. These surfaces are further coated by single or mixed thiol monolayers, by dipping the slides in toluene solutions of the chosen thiols. Exchange constants are calculated for the competitive deposition between the colorless 1-dodecanethiol or PEG5000 thiol and BDP-SH, with the latter being a thiol-beari…