Search results for " machine"
showing 10 items of 1317 documents
Multi-layer intrusion detection system with ExtraTrees feature selection, extreme learning machine ensemble, and softmax aggregation
2019
Abstract Recent advances in intrusion detection systems based on machine learning have indeed outperformed other techniques, but struggle with detecting multiple classes of attacks with high accuracy. We propose a method that works in three stages. First, the ExtraTrees classifier is used to select relevant features for each type of attack individually for each (ELM). Then, an ensemble of ELMs is used to detect each type of attack separately. Finally, the results of all ELMs are combined using a softmax layer to refine the results and increase the accuracy further. The intuition behind our system is that multi-class classification is quite difficult compared to binary classification. So, we…
Neural Networks as Soft Sensors: a Comparison in a Real World Application.
2006
Physical atmosphere parameters, as temperature or humidity, can be indirectly estimated on the surface of a monument by means of soft sensors based on neural networks, if an ambient air monitoring station works in the neighborhood of the monument itself. Since the soft sensors work as virtual instruments, the accuracy of such measurements has to be analyzed and validated from statistical and metrological points of view. The paper compares different typologies of neural networks, which can be used as soft sensors in a complex real world application: a non invasive monitoring of the conservation state of old monuments. In this context, several designed connessionistic systems, based on radial…
A Study of Perceptron Mapping Capability to Design Speech Event Detectors
2006
Event detection is a fundamental yet critical component in automatic speech recognition (ASR) systems that attempt to extract knowledge-based features at the front-end level. In this context, it is common practice to design the detectors inside well-known frameworks based on artificial neural network (ANN) or support vector machine (SVM). In the case of ANN, speech scientists often design their detector architecture relying on conventional feed-forward multi-layer perceptron (MLP) with sigmoidal activation function. The aim of this paper is to introduce other ANN architectures inside the context of detection-based ASR. In particular, a bank of feed-forward MLPs using sinusoidal activation f…
Support Tool for the Combined Software/Hardware Design of On-Chip ELM Training for SLFF Neural Networks
2016
Typically, hardware implemented neural networks are trained before implementation. Extreme learning machine (ELM) is a noniterative training method for single-layer feed-forward (SLFF) neural networks well suited for hardware implementation. It provides fixed-time learning and simplifies retraining of a neural network once implemented, which is very important in applications demanding on-chip training. This study proposes the data flow of a software support tool in the design process of a hardware implementation of on-chip ELM learning for SLFF neural networks. The software tool allows the user to obtain the optimal definition of functional and hardware parameters for any application, and e…
Towards reactive navigation and attention skills for 3D intelligent characters
2003
This paper presents a neural design which is able to provide the necessary reactive navigation and attention skills for 3D embodied agents (virtual humanoids or characters). Based on Grossberg's neural model of conditioning [6], as recently implemented by Chang and Gaudiando [7], and according to the Adaptative Resonance Theory (ART) and the neuroscientific concepts associated, the neural design introduced has been divided in two main phases. Firstly, an environmentcategorization phase, where an on-line pattern recognition and categorization of the current agent sensory input data is carried out by a self organizing neural network, which will finally provide the agent's short term memory la…
Fall Detection Based on the Instantaneous Doppler Frequency : A Machine Learning Approach
2019
Modern societies are facing an ageing problem which comes with increased cost of healthcare. A major share of this ever-increasing cost is due to fall related injuries, which urges the development of fall detection systems. In this context, this paper paves the way for building of a radio-frequency-based fall detection system. This paper presents an activity simulator that generates the complex channel gain of indoor channels in the presence of one person performing three different activities, namely, slow fall, fast fall, and walking. We built a machine learning framework for activity recognition based on the complex channel gain. We assess the recognition accuracy of three different class…
Adaptive Continuous Feature Binarization for Tsetlin Machines Applied to Forecasting Dengue Incidences in the Philippines
2020
The Tsetlin Machine (TM) is a recent interpretable machine learning algorithm that requires relatively modest computational power, yet attains competitive accuracy in several benchmarks. TMs are inherently binary; however, many machine learning problems are continuous. While binarization of continuous data through brute-force thresholding has yielded promising accuracy, such an approach is computationally expensive and hinders extrapolation. In this paper, we address these limitations by standardizing features to support scale shifts in the transition from training data to real-world operation, typical for e.g. forecasting. For scalability, we employ sampling to reduce the number of binariz…
Automatic Myocardial Infarction Evaluation from Delayed-Enhancement Cardiac MRI Using Deep Convolutional Networks
2021
In this paper, we propose a new deep learning framework for an automatic myocardial infarction evaluation from clinical information and delayed enhancement-MRI (DE-MRI). The proposed framework addresses two tasks. The first task is automatic detection of myocardial contours, the infarcted area, the no-reflow area, and the left ventricular cavity from a short-axis DE-MRI series. It employs two segmentation neural networks. The first network is used to segment the anatomical structures such as the myocardium and left ventricular cavity. The second network is used to segment the pathological areas such as myocardial infarction, myocardial no-reflow, and normal myocardial region. The segmented …
Integrating genomic binding site predictions using real-valued meta classifiers
2008
Currently the best algorithms for predicting transcription factor binding sites in DNA sequences are severely limited in accuracy. There is good reason to believe that predictions from different classes of algorithms could be used in conjunction to improve the quality of predictions. In this paper, we apply single layer networks, rules sets, support vector machines and the Adaboost algorithm to predictions from 12 key real valued algorithms. Furthermore, we use a ‘window’ of consecutive results as the input vector in order to contextualise the neighbouring results. We improve the classification result with the aid of under- and over-sampling techniques. We find that support vector machines …
Pose classification using support vector machines
2000
In this work a software architecture is presented for the automatic recognition of human arm poses. Our research has been carried on in the robotics framework. A mobile robot that has to find its path to the goal in a partially structured environment can be trained by a human operator to follow particular routes in order to perform its task quickly. The system is able to recognize and classify some different poses of the operator's arms as direction commands like "turn-left", "turn-right", "go-straight", and so on. A binary image of the operator silhouette is obtained from the gray-level input. Next, a slice centered on the silhouette itself is processed in order to compute the eigenvalues …