Search results for " materia"

showing 10 items of 18071 documents

Dynamical learning of a photonics quantum-state engineering process

2021

Abstract. Experimental engineering of high-dimensional quantum states is a crucial task for several quantum information protocols. However, a high degree of precision in the characterization of the noisy experimental apparatus is required to apply existing quantum-state engineering protocols. This is often lacking in practical scenarios, affecting the quality of the engineered states. We implement, experimentally, an automated adaptive optimization protocol to engineer photonic orbital angular momentum (OAM) states. The protocol, given a target output state, performs an online estimation of the quality of the currently produced states, relying on output measurement statistics, and determine…

/dk/atira/pure/subjectarea/asjc/2200/2204/dk/atira/pure/subjectarea/asjc/2500/2504Biomedical EngineeringphotonicsFOS: Physical sciencesquantum mechanicSettore FIS/03 - Fisica Della MateriaQuantum walkquantum informationquantum state engineeringqunatum informationblack-box optimizationQuantum Physicsquantum information; orbital angular momentum; black-box optimization; quantum state engineering; photonics/dk/atira/pure/subjectarea/asjc/3100/3107Orbital angular momentumState engineeringGeneral MedicineAtomic and Molecular Physics and OpticsElectronic Optical and Magnetic MaterialsAlgorithmmachine learningorbital angular momentumBlack-box optimizationQuantum Physics (quant-ph)Optics (physics.optics)Physics - OpticsAdvanced Photonics
researchProduct

The 3D structure of fabric and its relationship to liquid and vapor transport

2004

Polymeric carrier fabrics are commonly used in many industrial processes including manufacture of paper and board. Apart from acting as a carrier for the compressible porous material during the manufacturing process, the synthetic woven fabrics comprising mainly of poly ethylene terypthalate (PET) yarns, impart valuable product attributes, i.e. softness, bulk, absorbency, etc. in consumer products. The three-dimensional structure of the fabrics plays a critical role in deciding the manufacturing and energy efficiency as well as product end-use properties. X-ray micro computed tomography (X-CT) provides a non-intrusive technique to visualize and analyze the three-dimensional structure of por…

/dk/atira/pure/sustainabledevelopmentgoals/affordable_and_clean_energyChemistryPapermakingNanotechnologyThermal diffusivityTortuosityPermeability (earth sciences)Colloid and Surface ChemistryFluid dynamicsSDG 7 - Affordable and Clean EnergyDiffusion (business)Composite materialPorous mediumPorosityColloids and Surfaces A: Physicochemical and Engineering Aspects
researchProduct

Injection and ultrafast regeneration in dye-sensitized solar cells

2014

Injection of an electron from the excited dye molecule to the semiconductor is the initial charge separation step in dye-sensitized solar cells (DSC's). Though the dynamics of the forward injection process has been widely studied, the results reported so far are controversial, especially for complete DSC's. In this work, the electron injection in titanium dioxide (TiO2) films sensitized with ruthenium bipyridyl dyes N3 and N719 was studied both in neat solvent and in a typical iodide/triiodide (I-/I3 -) DSC electrolyte. Transient absorption (TA) spectroscopy was used to monitor both the formation of the oxidized dye and the arrival of injected electrons to the conduction band of TiO2. Emiss…

/dk/atira/pure/sustainabledevelopmentgoals/affordable_and_clean_energyta221Analytical chemistrychemistry.chemical_elementElectrolyteNanosecondPhotochemistrySurfaces Coatings and FilmsElectronic Optical and Magnetic MaterialsRutheniumDye-sensitized solar cellchemistry.chemical_compoundGeneral EnergychemistryPicosecondTitanium dioxideUltrafast laser spectroscopySDG 7 - Affordable and Clean EnergyPhysical and Theoretical ChemistryTriiodideta116
researchProduct

A Model for High-Cycle Fatigue in Polycrystals

2018

A grain-scale formulation for high-cycle fatigue inter-granular degradation in polycrystalline aggregates is presented. The aggregate is represented through Voronoi tessellations and the mechanics of individual bulk grains is modelled using a boundary integral formulation. The inter-granular interfaces degrade under the action of cyclic tractions and they are represented using cohesive laws embodying a local irreversible damage parameter that evolves according to high-cycle continuum damage laws. The consistence between cyclic and static damage, which plays an important role in the redistribution of inter-granular tractions upon cyclic degradation, is assessed at each fatigue solution jump,…

010101 applied mathematics020303 mechanical engineering & transportsMaterials science0203 mechanical engineeringMechanics of MaterialsMechanical EngineeringFatigue testingMicromechanicsGeneral Materials Science02 engineering and technology0101 mathematicsComposite material01 natural sciencesKey Engineering Materials
researchProduct

Hybrid Equilibrium Finite Element Formulation for Cohesive Crack Propagation

2019

Equilibrium elements have been developed in hybrid formulation with independent equilibrated stress fields on each element. Traction equilibrium condition, at sides between adjacent elements and at sides of free boundary, is enforced by use of independent displacement laws at each side, assumed as Lagrangian parameters. The displacement degrees of freedom belongs to the element side, where an extrinsic interface can be embedded. The embedded interface is defined by the same stress fields of the hybrid equilibrium element and it does not require any additional degrees of freedom. The extrinsic interface is developed in the consistent thermodynamic framework of damage mechanics with internal …

010101 applied mathematics020303 mechanical engineering & transportsMaterials science0203 mechanical engineeringMechanics of MaterialsMechanical EngineeringGeneral Materials ScienceFracture mechanics02 engineering and technologyMechanics0101 mathematics01 natural sciencesFinite element methodKey Engineering Materials
researchProduct

Virtual Element Method: Micro-Mechanics Applications

2019

In this contribution we present an application of the lowest order Virtual Element Method (VEM) to the problem of material computational homogenization. Material homogenization allows retrieving material properties through suitable volume averaging procedures, starting from a detailed representation of the micro-constituents of the considered material. The representation of such microstructure constitutes a remarkable effort in terms of data/mesh preparation, especially when there is not evident microstructural regularity. For such a reason, computational micromechanics may represent a challenging benchmark for showing the potential of VEM. In this contribution, polycrystalline materials ar…

010101 applied mathematics020303 mechanical engineering & transportsMaterials science0203 mechanical engineeringMechanics of MaterialsMechanical EngineeringMechanical engineeringMicromechanicsGeneral Materials Science02 engineering and technology0101 mathematicsElement (category theory)01 natural sciencesKey Engineering Materials
researchProduct

A Model for Low-Cycle Fatigue in Micro-Structured Materials

2019

A microscale formulation for low-cycle fatigue degradation in heterogeneous materials is presented. The interface traction-separation law is modelled by a cohesive zone model for low-cycle fatigue analysis, which is developed in a consistent thermodynamic framework of elastic-plastic-damage mechanics with internal variables. A specific fatigue activation condition allows to model the material degradation related to the elastic-plastic cyclic loading conditions, with tractions levels lower than the static failure condition. A moving endurance surface, in the classic framework of kinematic hardening, enables a pure elastic behaviour without any fatigue degradation for low levels of cyclic tra…

010101 applied mathematics020303 mechanical engineering & transportsMaterials science0203 mechanical engineeringMechanics of MaterialsMechanical EngineeringMicromechanicsGeneral Materials ScienceLow-cycle fatigue02 engineering and technology0101 mathematicsComposite material01 natural sciencesKey Engineering Materials
researchProduct

A Thermodynamically Consistent CZM for Low-Cycle Fatigue Analysis

2018

A cohesive zone model for low-cycle fatigue analysis is developed in a consistent thermodynamic framework of elastic-plastic-damage mechanics with internal variable. A specific fatigue activation condition allows to model the material degradation related to the elastic-plastic cyclic loading conditions, with tractions levels lower than the damage activation condition. A moving endurance surface, in the classic framework of kinematic hardening, enables a pure elastic behavior without any fatigue degradation for low levels loading conditions.

010101 applied mathematics020303 mechanical engineering & transportsMaterials science0203 mechanical engineeringMechanics of MaterialsMechanical EngineeringThermodynamicsGeneral Materials ScienceLow-cycle fatigue02 engineering and technology0101 mathematics01 natural sciencesStrength of materialsKey Engineering Materials
researchProduct

Angular dependence of the domain wall depinning field in the sensors with segmented corners

2017

Rotating domain wall based sensors that have recently been developed are based on a segmented looping geometry. In order to determine the crucial pinning of domain walls in this special geometry, we investigate the depinning under different angles of an applied magnetic field and obtain the angular dependence of the depinning field of the domain walls. Due to the geometry, the depinning field not only exhibits a 180$^\circ$-periodicity but a more complex dependence on the angle. The depinning field depends on two different angles associated with the initial state and the segmented geometry of the corner. We find that depending on the angle of the applied field two different switching proces…

010302 applied physics0301 basic medicineCondensed Matter - Materials ScienceHistoryMaterials scienceField (physics)Condensed matter physicsMaterials Science (cond-mat.mtrl-sci)FOS: Physical sciences01 natural sciencesComputer Science ApplicationsEducationMagnetic field03 medical and health sciences030104 developmental biologyDomain wall (magnetism)0103 physical sciencesAngular dependence
researchProduct

Controlled turbulence regime of electron cyclotron resonance ion source for improved multicharged ion performance

2020

Fundamental studies of excitation and non-linear evolution of kinetic instabilities of strongly nonequlibrium hot plasmas confined in open magnetic traps suggest new opportunities for fine-tuning of conventional electron cyclotron resonance (ECR) ion sources. These devices are widely used for the production of particle beams of high charge state ions. Operating the ion source in controlled turbulence regime allows increasing the absorbed power density and therefore the volumetric plasma energy content in the dense part of the discharge surrounded by the ECR surface, which leads to enhanced beam currents of high charge state ions. We report experiments at the ECR ion source at the JYFL accel…

010302 applied physicsAccelerator Physics (physics.acc-ph)Materials scienceAcoustics and UltrasonicsIon beamFOS: Physical sciencesPlasmaCondensed Matter PhysicsKinetic energy7. Clean energy01 natural sciencesElectron cyclotron resonanceIon sourcePhysics - Plasma Physics010305 fluids & plasmasSurfaces Coatings and FilmsElectronic Optical and Magnetic MaterialsIonPlasma Physics (physics.plasm-ph)Physics::Plasma Physics0103 physical sciencesPhysics - Accelerator PhysicsAtomic physicsExcitationBeam (structure)
researchProduct