Search results for " methodology"
showing 10 items of 575 documents
Local inhomogeneous weighted summary statistics for marked point processes
2023
We introduce a family of local inhomogeneous mark-weighted summary statistics, of order two and higher, for general marked point processes. Depending on how the involved weight function is specified, these summary statistics capture different kinds of local dependence structures. We first derive some basic properties and show how these new statistical tools can be used to construct most existing summary statistics for (marked) point processes. We then propose a local test of random labelling. This procedure allows us to identify points, and consequently regions, where the random labelling assumption does not hold, e.g.~when the (functional) marks are spatially dependent. Through a simulatio…
Estimation of causal effects with small data in the presence of trapdoor variables
2021
We consider the problem of estimating causal effects of interventions from observational data when well-known back-door and front-door adjustments are not applicable. We show that when an identifiable causal effect is subject to an implicit functional constraint that is not deducible from conditional independence relations, the estimator of the causal effect can exhibit bias in small samples. This bias is related to variables that we call trapdoor variables. We use simulated data to study different strategies to account for trapdoor variables and suggest how the related trapdoor bias might be minimized. The importance of trapdoor variables in causal effect estimation is illustrated with rea…
Bayesian inference for the extremal dependence
2016
A simple approach for modeling multivariate extremes is to consider the vector of component-wise maxima and their max-stable distributions. The extremal dependence can be inferred by estimating the angular measure or, alternatively, the Pickands dependence function. We propose a nonparametric Bayesian model that allows, in the bivariate case, the simultaneous estimation of both functional representations through the use of polynomials in the Bernstein form. The constraints required to provide a valid extremal dependence are addressed in a straightforward manner, by placing a prior on the coefficients of the Bernstein polynomials which gives probability one to the set of valid functions. The…
Thresholding projection estimators in functional linear models
2008
We consider the problem of estimating the regression function in functional linear regression models by proposing a new type of projection estimators which combine dimension reduction and thresholding. The introduction of a threshold rule allows to get consistency under broad assumptions as well as minimax rates of convergence under additional regularity hypotheses. We also consider the particular case of Sobolev spaces generated by the trigonometric basis which permits to get easily mean squared error of prediction as well as estimators of the derivatives of the regression function. We prove these estimators are minimax and rates of convergence are given for some particular cases.
Isotonic regression for metallic microstructure data: estimation and testing under order restrictions
2021
Investigating the main determinants of the mechanical performance of metals is not a simple task. Already known physical inspired qualitative relations between 2D microstructure characteristics and 3D mechanical properties can act as the starting point of the investigation. Isotonic regression allows to take into account ordering relations and leads to more efficient and accurate results when the underlying assumptions actually hold. The main goal in this paper is to test order relations in a model inspired by a materials science application. The statistical estimation procedure is described considering three different scenarios according to the knowledge of the variances: known variance ra…
Bayesian Checking of the Second Levels of Hierarchical Models
2007
Hierarchical models are increasingly used in many applications. Along with this increased use comes a desire to investigate whether the model is compatible with the observed data. Bayesian methods are well suited to eliminate the many (nuisance) parameters in these complicated models; in this paper we investigate Bayesian methods for model checking. Since we contemplate model checking as a preliminary, exploratory analysis, we concentrate on objective Bayesian methods in which careful specification of an informative prior distribution is avoided. Numerous examples are given and different proposals are investigated and critically compared.
Bootstrap validation of links of a minimum spanning tree
2018
We describe two different bootstrap methods applied to the detection of a minimum spanning tree obtained from a set of multivariate variables. We show that two different bootstrap procedures provide partly distinct information that can be highly informative about the investigated complex system. Our case study, based on the investigation of daily returns of a portfolio of stocks traded in the US equity markets, shows the degree of robustness and completeness of the information extracted with popular information filtering methods such as the minimum spanning tree and the planar maximally filtered graph. The first method performs a "row bootstrap" whereas the second method performs a "pair bo…
Panel Data Analysis via Mechanistic Models
2018
Panel data, also known as longitudinal data, consist of a collection of time series. Each time series, which could itself be multivariate, comprises a sequence of measurements taken on a distinct unit. Mechanistic modeling involves writing down scientifically motivated equations describing the collection of dynamic systems giving rise to the observations on each unit. A defining characteristic of panel systems is that the dynamic interaction between units should be negligible. Panel models therefore consist of a collection of independent stochastic processes, generally linked through shared parameters while also having unit-specific parameters. To give the scientist flexibility in model spe…
Estimating with kernel smoothers the mean of functional data in a finite population setting. A note on variance estimation in presence of partially o…
2014
In the near future, millions of load curves measuring the electricity consumption of French households in small time grids (probably half hours) will be available. All these collected load curves represent a huge amount of information which could be exploited using survey sampling techniques. In particular, the total consumption of a specific cus- tomer group (for example all the customers of an electricity supplier) could be estimated using unequal probability random sampling methods. Unfortunately, data collection may undergo technical problems resulting in missing values. In this paper we study a new estimation method for the mean curve in the presence of missing values which consists in…
Conditional Bias Robust Estimation of the Total of Curve Data by Sampling in a Finite Population: An Illustration on Electricity Load Curves
2020
Abstract For marketing or power grid management purposes, many studies based on the analysis of total electricity consumption curves of groups of customers are now carried out by electricity companies. Aggregated totals or mean load curves are estimated using individual curves measured at fine time grid and collected according to some sampling design. Due to the skewness of the distribution of electricity consumptions, these samples often contain outlying curves which may have an important impact on the usual estimation procedures. We introduce several robust estimators of the total consumption curve which are not sensitive to such outlying curves. These estimators are based on the conditio…