Search results for " methodology"

showing 10 items of 575 documents

Local inhomogeneous weighted summary statistics for marked point processes

2023

We introduce a family of local inhomogeneous mark-weighted summary statistics, of order two and higher, for general marked point processes. Depending on how the involved weight function is specified, these summary statistics capture different kinds of local dependence structures. We first derive some basic properties and show how these new statistical tools can be used to construct most existing summary statistics for (marked) point processes. We then propose a local test of random labelling. This procedure allows us to identify points, and consequently regions, where the random labelling assumption does not hold, e.g.~when the (functional) marks are spatially dependent. Through a simulatio…

FOS: Computer and information sciencesStatistics and ProbabilityEarthquakefunctional marked point proceStatistics - Computationmark correlation functionMethodology (stat.ME)Discrete Mathematics and Combinatoricsrandom labellingStatistics Probability and UncertaintySettore SECS-S/01 - Statisticamarked K-functionComputation (stat.CO)Statistics - Methodologylocal envelope test
researchProduct

Estimation of causal effects with small data in the presence of trapdoor variables

2021

We consider the problem of estimating causal effects of interventions from observational data when well-known back-door and front-door adjustments are not applicable. We show that when an identifiable causal effect is subject to an implicit functional constraint that is not deducible from conditional independence relations, the estimator of the causal effect can exhibit bias in small samples. This bias is related to variables that we call trapdoor variables. We use simulated data to study different strategies to account for trapdoor variables and suggest how the related trapdoor bias might be minimized. The importance of trapdoor variables in causal effect estimation is illustrated with rea…

FOS: Computer and information sciencesStatistics and ProbabilityEconomics and EconometricsbiascausalityComputer scienceBayesian probabilityContext (language use)01 natural sciencesStatistics - ComputationMethodology (stat.ME)010104 statistics & probability0504 sociologyEconometrics0101 mathematicsComputation (stat.CO)Statistics - MethodologyestimointiEstimationSmall databayesilainen menetelmä05 social sciences050401 social sciences methodsEstimatorBayesian estimationidentifiabilityConstraint (information theory)functional constraintConditional independencekausaliteettiObservational studyStatistics Probability and UncertaintySocial Sciences (miscellaneous)
researchProduct

Bayesian inference for the extremal dependence

2016

A simple approach for modeling multivariate extremes is to consider the vector of component-wise maxima and their max-stable distributions. The extremal dependence can be inferred by estimating the angular measure or, alternatively, the Pickands dependence function. We propose a nonparametric Bayesian model that allows, in the bivariate case, the simultaneous estimation of both functional representations through the use of polynomials in the Bernstein form. The constraints required to provide a valid extremal dependence are addressed in a straightforward manner, by placing a prior on the coefficients of the Bernstein polynomials which gives probability one to the set of valid functions. The…

FOS: Computer and information sciencesStatistics and ProbabilityInferenceBernstein polynomialsBivariate analysisBayesian inference01 natural sciencesMethodology (stat.ME)Bayesian nonparametrics010104 statistics & probabilitysymbols.namesakeGeneralised extreme value distribution0502 economics and business62G07Applied mathematics62G05Degree of a polynomial0101 mathematicsStatistics - Methodology050205 econometrics MathematicsAngular measureMax-stable distributionGENERALISED EXTREME VALUE DISTRIBUTION EXTREMAL DEPENDENCE ANGULAR MEASURE MAX-STABLE DISTRIBUTION BERNSTEIN POLYNOMIALS BAYESIAN NONPARAMETRICS TRANS-DIMENSIONAL MCMC EXCHANGE RATEExchange rates05 social sciencesNonparametric statisticsMarkov chain Monte CarloBernstein polynomialGENERALISED EXTREME VALUE DISTRIBUTION; EXTREMAL DEPENDENCE; ANGULAR MEASURE; MAX-STABLE DISTRIBUTION; BERNSTEIN POLYNOMIALS; BAYESIAN NONPARAMETRICS; TRANS-DIMENSIONAL MCMC; EXCHANGE RATETrans-dimensional MCMCEXCHANGE RATEsymbolsStatistics Probability and UncertaintySettore SECS-S/01 - StatisticaMaximaExtremal dependence62G32Electronic Journal of Statistics
researchProduct

Thresholding projection estimators in functional linear models

2008

We consider the problem of estimating the regression function in functional linear regression models by proposing a new type of projection estimators which combine dimension reduction and thresholding. The introduction of a threshold rule allows to get consistency under broad assumptions as well as minimax rates of convergence under additional regularity hypotheses. We also consider the particular case of Sobolev spaces generated by the trigonometric basis which permits to get easily mean squared error of prediction as well as estimators of the derivatives of the regression function. We prove these estimators are minimax and rates of convergence are given for some particular cases.

FOS: Computer and information sciencesStatistics and ProbabilityMathematical optimizationStatistics::TheoryMean squared error of predictionMean squared errorMathematics - Statistics TheoryStatistics Theory (math.ST)Projection (linear algebra)Methodology (stat.ME)FOS: MathematicsApplied mathematicsStatistics - MethodologyMathematicsLinear inverse problemNumerical AnalysisLinear modelEstimatorRegression analysisMinimaxSobolev spaceThresholdingOptimal rate of convergenceDerivatives estimationRate of convergenceHilbert scaleStatistics Probability and UncertaintyGalerkin methodJournal of Multivariate Analysis
researchProduct

Isotonic regression for metallic microstructure data: estimation and testing under order restrictions

2021

Investigating the main determinants of the mechanical performance of metals is not a simple task. Already known physical inspired qualitative relations between 2D microstructure characteristics and 3D mechanical properties can act as the starting point of the investigation. Isotonic regression allows to take into account ordering relations and leads to more efficient and accurate results when the underlying assumptions actually hold. The main goal in this paper is to test order relations in a model inspired by a materials science application. The statistical estimation procedure is described considering three different scenarios according to the knowledge of the variances: known variance ra…

FOS: Computer and information sciencesStatistics and ProbabilityMathematical optimizationgeometrically necessary dislocationsComputer science0211 other engineering and technologiesG.302 engineering and technology01 natural sciencesStatistics - ApplicationsMethodology (stat.ME)010104 statistics & probabilitySimple (abstract algebra)Isotonic regressionApplications (stat.AP)0101 mathematicsbootstraporder restrictionsStatistics - Methodology021103 operations researchlikelihood ratio testMicrostructurealternating iterative methodOrder (business)Geometrically necessary dislocationsLikelihood-ratio testStatistics Probability and UncertaintyIsotonic regression62F30 62F03 97K80
researchProduct

Bayesian Checking of the Second Levels of Hierarchical Models

2007

Hierarchical models are increasingly used in many applications. Along with this increased use comes a desire to investigate whether the model is compatible with the observed data. Bayesian methods are well suited to eliminate the many (nuisance) parameters in these complicated models; in this paper we investigate Bayesian methods for model checking. Since we contemplate model checking as a preliminary, exploratory analysis, we concentrate on objective Bayesian methods in which careful specification of an informative prior distribution is avoided. Numerous examples are given and different proposals are investigated and critically compared.

FOS: Computer and information sciencesStatistics and ProbabilityModel checkingModel checkingComputer scienceconflictGeneral MathematicsBayesian probabilityMachine learningcomputer.software_genreMethodology (stat.ME)partial posterior predictivePrior probabilityStatistics - Methodologybusiness.industrymodel criticismProbability and statisticsExploratory analysisobjective Bayesian methodsempirical-Bayesposterior predictivep-valuesArtificial intelligenceStatistics Probability and Uncertaintybusinesscomputer
researchProduct

Bootstrap validation of links of a minimum spanning tree

2018

We describe two different bootstrap methods applied to the detection of a minimum spanning tree obtained from a set of multivariate variables. We show that two different bootstrap procedures provide partly distinct information that can be highly informative about the investigated complex system. Our case study, based on the investigation of daily returns of a portfolio of stocks traded in the US equity markets, shows the degree of robustness and completeness of the information extracted with popular information filtering methods such as the minimum spanning tree and the planar maximally filtered graph. The first method performs a "row bootstrap" whereas the second method performs a "pair bo…

FOS: Computer and information sciencesStatistics and ProbabilityMultivariate statisticsCorrelation coefficientCovariance matrixReplicaComplex systemMinimum spanning treeCondensed Matter Physics01 natural sciencesSettore FIS/07 - Fisica Applicata(Beni Culturali Ambientali Biol.e Medicin)Minimum spanning tree Bootstrap Planar maximally filtered graph Information filtering Proximity based networks Random matrix theory010305 fluids & plasmasMethodology (stat.ME)0103 physical sciencesStatistics010306 general physicsRandom matrixStatistics - MethodologyMathematics
researchProduct

Panel Data Analysis via Mechanistic Models

2018

Panel data, also known as longitudinal data, consist of a collection of time series. Each time series, which could itself be multivariate, comprises a sequence of measurements taken on a distinct unit. Mechanistic modeling involves writing down scientifically motivated equations describing the collection of dynamic systems giving rise to the observations on each unit. A defining characteristic of panel systems is that the dynamic interaction between units should be negligible. Panel models therefore consist of a collection of independent stochastic processes, generally linked through shared parameters while also having unit-specific parameters. To give the scientist flexibility in model spe…

FOS: Computer and information sciencesStatistics and ProbabilityMultivariate statisticsSeries (mathematics)Longitudinal dataComputer science05 social sciences01 natural sciencesMethodology (stat.ME)010104 statistics & probabilityNonlinear system0502 economics and business0101 mathematicsStatistics Probability and UncertaintyParticle filterAlgorithmStatistics - Methodology050205 econometrics Panel dataSequence (medicine)Journal of the American Statistical Association
researchProduct

Estimating with kernel smoothers the mean of functional data in a finite population setting. A note on variance estimation in presence of partially o…

2014

In the near future, millions of load curves measuring the electricity consumption of French households in small time grids (probably half hours) will be available. All these collected load curves represent a huge amount of information which could be exploited using survey sampling techniques. In particular, the total consumption of a specific cus- tomer group (for example all the customers of an electricity supplier) could be estimated using unequal probability random sampling methods. Unfortunately, data collection may undergo technical problems resulting in missing values. In this paper we study a new estimation method for the mean curve in the presence of missing values which consists in…

FOS: Computer and information sciencesStatistics and ProbabilityPopulationRatio estimatorLinearizationRatio estimator01 natural sciencesSurvey sampling.Horvitz–Thompson estimatorMethodology (stat.ME)010104 statistics & probabilityH\'ajek estimator0502 economics and businessApplied mathematicsMissing valuesHorvitz-Thompson estimator0101 mathematicseducationStatistics - Methodology050205 econometrics MathematicsPointwiseeducation.field_of_study[STAT.ME] Statistics [stat]/Methodology [stat.ME]05 social sciencesNonparametric statisticsEstimator16. Peace & justiceMissing dataFunctional data[ STAT.ME ] Statistics [stat]/Methodology [stat.ME]Kernel (statistics)Statistics Probability and UncertaintyNonparametric estimation[STAT.ME]Statistics [stat]/Methodology [stat.ME]
researchProduct

Conditional Bias Robust Estimation of the Total of Curve Data by Sampling in a Finite Population: An Illustration on Electricity Load Curves

2020

Abstract For marketing or power grid management purposes, many studies based on the analysis of total electricity consumption curves of groups of customers are now carried out by electricity companies. Aggregated totals or mean load curves are estimated using individual curves measured at fine time grid and collected according to some sampling design. Due to the skewness of the distribution of electricity consumptions, these samples often contain outlying curves which may have an important impact on the usual estimation procedures. We introduce several robust estimators of the total consumption curve which are not sensitive to such outlying curves. These estimators are based on the conditio…

FOS: Computer and information sciencesStatistics and ProbabilityPopulationWaveletsStatistics - Applications01 natural sciencesSurvey samplingMethodology (stat.ME)010104 statistics & probabilityKokic and bell methodConditional bias0502 economics and businessStatisticsApplications (stat.AP)Conditional bias0101 mathematics[MATH]Mathematics [math]educationStatistics - Methodology050205 econometrics MathematicsEstimationeducation.field_of_studyModified band depthbusiness.industryApplied Mathematics05 social sciencesSampling (statistics)Functional dataBootstrapElectricityStatistics Probability and Uncertaintybusinessasymptotic confidence bandsSocial Sciences (miscellaneous)Spherical principal component analysis
researchProduct