Search results for " mobility"
showing 10 items of 577 documents
Influence of Compensating Defect Formation on the Doping Efficiency and Thermoelectric Properties of Cu2-ySe1–xBrx
2015
The superionic conductor Cu_(2−δ)Se has been shown to be a promising thermoelectric at higher temperatures because of very low lattice thermal conductivities, attributed to the liquid-like mobility of copper ions in the superionic phase. In this work, we present the potential of copper selenide to achieve a high figure of merit at room temperature, if the intrinsically high hole carrier concentration can be reduced. Using bromine as a dopant, we show that reducing the charge carrier concentration in Cu_(2−δ)Se is in fact possible. Furthermore, we provide profound insight into the complex defect chemistry of bromine doped Cu_(2−δ)Se via various analytical methods and investigate the conseque…
Trapping of three-dimensional electrons and transition to two-dimensional transport in the three-dimensional topological insulator Bi2Se3under high p…
2012
This paper reports an experimental and theoretical investigation on the electronic structure of bismuth selenide (Bi2Se3) up to 9 GPa. The optical gap of Bi2Se3 increases from 0.17 eV at ambient pressure to 0.45 eV at 8 GPa. The quenching of the Burstein-Moss effect in degenerate samples and the shift of the free-carrier plasma frequency to lower energies reveal a quick decrease of the bulk three-dimensional (3D) electron concentration under pressure. On increasing pressure the behavior of Hall electron concentration and mobility depends on the sample thickness, consistently with a gradual transition from mainly 3D transport at ambient pressure to mainly two-dimensional (2D) transport at hi…
Thermoelectric properties of Zn-doped Ca_(3)AlSb_(3)
2012
Polycrystalline samples of Ca_(3)Al_(1)−_(x)Zn_(x)Sb_(3), with x = 0.00, 0.01, 0.02, and 0.05 were synthesized via a combined ball milling and hot pressing technique and the influence of zinc as a dopant on the thermoelectric properties was studied and compared to the previously reported transport properties of sodium-doped Ca_(3)AlSb_(3). Consistent with the transport in the sodium-doped material, substitution of aluminum with zinc leads to p-type carrier conduction that can be sufficiently explained with a single parabolic band model. It is found that, while exhibiting higher carrier mobilities, the doping effectiveness of zinc is lower than that of sodium and the optimum carrier concentr…
Solvent-mediated assembly of atom-precise gold–silver nanoclusters to semiconducting one-dimensional materials
2020
Bottom-up design of functional device components based on nanometer-sized building blocks relies on accurate control of their self-assembly behavior. Atom-precise metal nanoclusters are well-characterizable building blocks for designing tunable nanomaterials, but it has been challenging to achieve directed assembly to macroscopic functional cluster-based materials with highly anisotropic properties. Here, we discover a solvent-mediated assembly of 34-atom intermetallic gold–silver clusters protected by 20 1-ethynyladamantanes into 1D polymers with Ag–Au–Ag bonds between neighboring clusters as shown directly by the atomic structure from single-crystal X-ray diffraction analysis. Density fun…
Temperature Dependent Quantum Efficiencies in Multicrystalline Silicon Solar Cells
2015
Abstract Several field studies comparing modules based on Elkem Solar Silicon ® (ESS ® ) cells with reference modules based on non-compensated virgin polysilicon show that the compensated ESS ® modules outperform the reference modules with comparable installed capacity under certain operating conditions. At high temperatures and high irradiation conditions the modules based on compensated silicon produce more energy than the reference modules. In order to increase the understanding of the observed effect cells are studied at different temperatures by the means of IV-characteristics as well as quantum efficiencies. Quantum efficiency measurements show that the main difference between ESS ® c…
Electron scattering mechanisms inn-type indium selenide
1984
Electron scattering mechanisms in $n$-type indium selenide are investigated by means of the temperature dependence (4-500 K) of Hall mobility and the magnetic field dependence of Hall and magnetoresistance coefficients. The Schmid model for homopolar optical-phonon scattering can explain the temperature dependence of electron mobility above 40 K. The electron-phonon coupling constant is determined, ${g}^{2}=0.054$. The optical phonon involved in the process is identified as the ${A}_{1}^{\ensuremath{'}}$ phonon with energy 14.3 meV. The magnetic field dependence of Hall and magnetoresistance coefficients is discussed in terms of the Jones-Zener expansion.
Si Donor Incorporation in GaN Nanowires
2015
With increasing interest in GaN based devices, the control and evaluation of doping are becoming more and more important. We have studied the structural and electrical properties of a series of Si-doped GaN nanowires (NWs) grown by molecular beam epitaxy (MBE) with a typical dimension of 2-3 μm in length and 20-200 nm in radius. In particular, high resolution energy dispersive X-ray spectroscopy (EDX) has illustrated a higher Si incorporation in NWs than that in two-dimensional (2D) layers and Si segregation at the edge of the NW with the highest doping. Moreover, direct transport measurements on single NWs have shown a controlled doping with resistivity from 10(2) to 10(-3) Ω·cm, and a car…
Increased conductivity of a hole transport layer due to oxidation by a molecular nanomagnet
2008
Thin film transistors based on polyarylamine poly?N,N?-diphenyl-N,N ?bis?4-hexylphenyl?- ?1,1?biphenyl?-4,4?-diamine ?pTPD? were fabricated using spin coating in order to measure the mobility of pTPD upon oxidation. Partially oxidized pTPD with a molecular magnetic cluster showed an increase in mobility of over two orders of magnitude. A transition in the mobility of pTPD upon doping could also be observed by the presence of a maximum obtained for a given oxidant ratio and subsequent decrease for a higher ratio. Such result agrees well with a previously reported model based on the combined effect of dipolar broadening of the density of states and transport manifold filling. Peer Reviewed
Correlation between optical and transport properties of Ga-doped ZnO thin films prepared by pulsed laser deposition
2006
Abstract In this paper we report on the correlation between the transport and optical properties of Ga-doped ZnO films epitaxially grown on C-oriented sapphire substrates by means of pulsed laser deposition. Thin films with electron concentrations ranging between 10 20 and 10 21 cm −3 were prepared from targets containing 0.25–5 at.% Ga. The Ga content in the thin films was estimated by XPS, from the ratio between the intensities of the 2p peaks of Ga and Zn. The electron concentration in the films is very close to the Ga content for films prepared from low Ga content targets even at high deposition temperature. For Ga contents in the target larger than 1%, the Ga content in the films incr…
Acoustic manipulation of electron-hole pairs in GaAs at room temperature
2004
We demonstrate the optically detected long-range (>100 μm) ambipolar transport of photogenerated electrons and holes at room temperature by surface acoustic waves (SAWs) in (In,Ga)As-based quantum well structures coupled to an optical microcavity. We also show the control of the propagation direction of the carriers by a switch composed of orthogonal SAW beams, which can be used as a basic control gate for information processing based on ambipolar transport.