Search results for " optimization"
showing 10 items of 2367 documents
DESDEO : An Open Framework for Interactive Multiobjective Optimization
2018
We introduce a framework for interactive multiobjective optimization methods called DESDEO released under an open source license. With the framework, we want to make interactive methods easily accessible to be applied in solving real-world problems. The framework follows an object-oriented software design paradigm, where functionalities have been divided to modular, self-contained components. The framework contains implementations of some interactive methods, but also components which can be utilized to implement more interactive methods and, thus, increase the applicability of the framework. To demonstrate how the framework can be used, we consider an example problem where the pollution of…
A Novel Intelligent Technique for Product Acceptance Process Optimization on the Basis of Misclassification Probability in the Case of Log-Location-S…
2019
In this paper, to determine the optimal parameters of the product acceptance process under parametric uncertainty of underlying models, a new intelligent technique for optimization of product acceptance process on the basis of misclassification probability is proposed. It allows one to take into account all possible situations that may occur when it is necessary to optimize the product acceptance process. The technique is based on the pivotal quantity averaging approach (PQAA) which allows one to eliminate the unknown parameters from the problem and to use available statistical information as completely as possible. It is conceptually simple and easy to use. One of the most important featur…
Intelligent Constructing Exact Tolerance Limits for Prediction of Future Outcomes Under Parametric Uncertainty
2021
The problem of constructing one-sided exact statistical tolerance limits on the kth order statistic in a future sample of m observations from a distribution of log-location-scale family on the basis of an observed sample from the same distribution is considered. The new technique proposed here emphasizes pivotal quantities relevant for obtaining tolerance factors and is applicable whenever the statistical problem is invariant under a group of transformations that acts transitively on the parameter space. The exact tolerance limits on order statistics associated with sampling from underlying distributions can be found easily and quickly making tables, simulation, Monte Carlo estimated percen…
A New Intelligent Technique of Constructing Optimal Airline Seat Protection Levels for Multiple Nested Fare Classes of Single-Leg Flights
2019
A new, rigorous formulation of the optimization problem of airline seat protection levels for multiple nested fare classes is presented. A number of results useful for practical application are obtained. A numerical example is given.
Quantum clustering in non-spherical data distributions: Finding a suitable number of clusters
2017
Quantum Clustering (QC) provides an alternative approach to clustering algorithms, several of which are based on geometric relationships between data points. Instead, QC makes use of quantum mechanics concepts to find structures (clusters) in data sets by finding the minima of a quantum potential. The starting point of QC is a Parzen estimator with a fixed length scale, which significantly affects the final cluster allocation. This dependence on an adjustable parameter is common to other methods. We propose a framework to find suitable values of the length parameter σ by optimising twin measures of cluster separation and consistency for a given cluster number. This is an extension of the Se…
Search for a Minimal Set of Parameters by Assessing the Total Optimization Potential for a Dynamic Model of a Biochemical Network.
2017
Selecting an efficient small set of adjustable parameters to improve metabolic features of an organism is important for a reduction of implementation costs and risks of unpredicted side effects. In practice, to avoid the analysis of a huge combinatorial space for the possible sets of adjustable parameters, experience-, and intuition-based subsets of parameters are often chosen, possibly leaving some interesting counter-intuitive combinations of parameters unrevealed. The combinatorial scan of possible adjustable parameter combinations at the model optimization level is possible; however, the number of analyzed combinations is still limited. The total optimization potential (TOP) approach is…
A Dirichlet Autoregressive Model for the Analysis of Microbiota Time-Series Data
2021
Growing interest in understanding microbiota dynamics has motivated the development of different strategies to model microbiota time series data. However, all of them must tackle the fact that the available data are high-dimensional, posing strong statistical and computational challenges. In order to address this challenge, we propose a Dirichlet autoregressive model with time-varying parameters, which can be directly adapted to explain the effect of groups of taxa, thus reducing the number of parameters estimated by maximum likelihood. A strategy has been implemented which speeds up this estimation. The usefulness of the proposed model is illustrated by application to a case study.
Impact of ultrasound extraction parameters on the antioxidant properties of Moringa oleifera leaves
2020
Recently, much interest has been focused on Moringa oleifera L., a highly versatile and sustainable plant. In addition to its nutritional properties, numerous bioactive compounds have been identified in M. oleifera leaves, for which healthy properties have been reported. In the present research, the impact of ultrasound-assisted extraction (UAE) on the recovery of the bioactive compounds from leaves was investigated. Firstly, an experimental design approach has been used to highlight the influence of some extraction parameters (solvent, solvent/dry leaves ratio, temperature, time) on phenol compound recovery and antioxidant activity. Solvent composition was the most influential factor
SpaceScanner: COPASI wrapper for automated management of global stochastic optimization experiments
2017
Abstract Motivation Due to their universal applicability, global stochastic optimization methods are popular for designing improvements of biochemical networks. The drawbacks of global stochastic optimization methods are: (i) no guarantee of finding global optima, (ii) no clear optimization run termination criteria and (iii) no criteria to detect stagnation of an optimization run. The impact of these drawbacks can be partly compensated by manual work that becomes inefficient when the solution space is large due to combinatorial explosion of adjustable parameters or for other reasons. Results SpaceScanner uses parallel optimization runs for automatic termination of optimization tasks in case…
A heuristic, iterative algorithm for change-point detection in abrupt change models
2017
Change-point detection in abrupt change models is a very challenging research topic in many fields of both methodological and applied Statistics. Due to strong irregularities, discontinuity and non-smootheness, likelihood based procedures are awkward; for instance, usual optimization methods do not work, and grid search algorithms represent the most used approach for estimation. In this paper a heuristic, iterative algorithm for approximate maximum likelihood estimation is introduced for change-point detection in piecewise constant regression models. The algorithm is based on iterative fitting of simple linear models, and appears to extend easily to more general frameworks, such as models i…