Search results for " polymer"

showing 10 items of 3533 documents

Recovery from Toxic-Induced Demyelination Does Not Require the NG2 Proteoglycan

2016

NG2 cells are defined as CNS cells expressing chondroitin sulfate proteoglycan nerve/glia antigen. The vast majority of NG2-positive cells also express platelet-derived growth factor receptor alpha (PDGFRα) and are oligodendroglial progenitors (OPC). In addition a subpopulation of pericytes expresses NG2, but is positive for PDGF receptor beta (PDGFRβ) [1]. NG2-positive OPC comprise approximately 5% of the cells in the CNS where they are evenly distributed in grey and white matter [2, 3]. NG2-positive OPC form synapses with neurons [4–6] and react to brain injury with proliferation, as has been shown in several animal models as well as in human demyelinating and degenerative diseases [7–9].…

0301 basic medicineReceptor Platelet-Derived Growth Factor alphaCellular differentiationlcsh:MedicineGene ExpressionMice TransgenicOLIG203 medical and health scienceschemistry.chemical_compoundCuprizone0302 clinical medicineCell MovementExtracellularmedicineAnimalsRemyelinationAntigenslcsh:ScienceCells CulturedCell ProliferationMice KnockoutMultidisciplinarybiologyMicrogliaReverse Transcriptase Polymerase Chain ReactionStem Cellslcsh:RBrainCorrectionCell DifferentiationImmunohistochemistryCell biologyMicroscopy ElectronOligodendroglia030104 developmental biologymedicine.anatomical_structurenervous systemchemistryChondroitin sulfate proteoglycanCell cultureImmunologybiology.proteinlcsh:QProteoglycans030217 neurology & neurosurgeryPlatelet-derived growth factor receptorDemyelinating DiseasesPloS one
researchProduct

Progressive Characterization of Visual Phenotype in Bardet-Biedl Syndrome Mutant Mice

2019

Purpose Bardet-Biedl syndrome (BBS) is an archetypical ciliopathy caused by defective ciliary trafficking and consequent function. Insights gained from BBS mouse models are applicable to other syndromic and nonsyndromic retinal diseases. This progressive characterization of the visual phenotype in three BBS mouse models sets a baseline for testing therapeutic interventions. Methods Longitudinal acquisition of electroretinograms, optical coherence tomography scans, and visual acuity using the optomotor reflex in Bbs6/Mkks, Bbs8/Ttc8, and Bbs5 knockout mice. Gene and protein expression analysis in vivo and in vitro. Results Complete loss of BBS5, BBS6, or BBS8 leads to different rates of reti…

0301 basic medicineRetinal degenerationAgingBBSomeGenotyping Techniquesgenetic structuresBlotting WesternGroup II ChaperoninsBBS5030105 genetics & heredityBiologyReal-Time Polymerase Chain ReactionRetinaMKKSMice03 medical and health sciencesBardet–Biedl syndromeElectroretinographymedicineAnimalsBardet-Biedl SyndromeVision OcularMice Knockoutmedicine.diagnostic_testRetinal DegenerationPhosphate-Binding Proteinsmedicine.diseaseImmunohistochemistryMice Mutant StrainsCytoskeletal ProteinsDisease Models AnimalCiliopathyPhenotype030104 developmental biologyKnockout mouseCarrier ProteinsMicrotubule-Associated ProteinsNeuroscienceTomography Optical CoherenceSignal TransductionElectroretinographyInvestigative Opthalmology & Visual Science
researchProduct

Quantitative characterization of translational riboregulators using an in vitro transcription–translation system

2018

Riboregulators are short RNA sequences that, upon binding to a ligand, change their secondary structure and influence the expression rate of a downstream gene. They constitute an attractive alternative to transcription factors for building synthetic gene regulatory networks because they can be engineered de novo. However, riboregulators are generally designed in silico and tested in vivo, which provides little quantitative information about their performances, thus hindering the improvement of design algorithms. Here we show that a cell-free transcription-translation (TX-TL) system provides valuable information about the performances of in silico designed riboregulators. We first propose a …

0301 basic medicineRiboregulator[SDV.BIO]Life Sciences [q-bio]/BiotechnologyTranscription GeneticIn silicoBiomedical EngineeringComputational biologyReal-Time Polymerase Chain ReactionRibosomeBiochemistry Genetics and Molecular Biology (miscellaneous)FluorescenceSynthetic biologyViral Proteins03 medical and health scienceschemistry.chemical_compound0302 clinical medicineRNA Transfer[CHIM]Chemical SciencesQH426GeneTranscription factor030304 developmental biology0303 health sciencesCell-free protein synthesisCell-Free SystemModels GeneticChemistryActivator (genetics)030302 biochemistry & molecular biologyRNADNADNA-Directed RNA PolymerasesGeneral MedicineCell-free protein synthesisMolecular machine3. Good health030104 developmental biologyGene Expression RegulationGenetic TechniquesProtein BiosynthesisRNA translational riboregulatorNucleic Acid ConformationRNAIn vitro synthetic biology5' Untranslated Regions030217 neurology & neurosurgeryDNA
researchProduct

Antiproliferative Effect of Elastin-Derived Peptide VGVAPG on SH-SY5Y Neuroblastoma Cells

2019

Throughout the lifetime of humans, the amount of stem cells and the rate of cell proliferation continue to decrease. Reactive oxygen species (ROS) are one among the many factors that promote stem cell aging. Both a decrease in the level of stem cells and increase in ROS production can lead to the development of different neurodegenerative diseases. This study was conducted to determine how the VGVAPG peptide, liberated from elastin during the aging process and under pathological conditions, affects ROS production and activities of antioxidant enzymes in undifferentiated, proliferating SH-SY5Y cells. SH-SY5Y cells were maintained in Dulbecco’s modified Eagle’s medium/nutrient mixture F-12 su…

0301 basic medicineSH-SY5YProliferationEnzyme-Linked Immunosorbent AssayToxicologySH-SY5YReal-Time Polymerase Chain ReactionSuperoxide dismutase03 medical and health sciencesNeuroblastoma0302 clinical medicineSuperoxide Dismutase-1Cell Line TumorHumansCell Proliferationchemistry.chemical_classificationReactive oxygen speciesGlutathione PeroxidasebiologyDose-Response Relationship DrugCell growthGeneral NeuroscienceGlutathione peroxidaseROSCatalaseCell biologyElastin-derived peptidesElastinPPAR gamma030104 developmental biologyKi-67 AntigenchemistryVGVAPGbiology.proteinOriginal ArticleStem cellReactive Oxygen SpeciesElastinOligopeptides030217 neurology & neurosurgeryFetal bovine serumNeurotoxicity Research
researchProduct

Extinct type of human parvovirus B19 persists in tonsillar B cells

2017

Parvovirus B19 (B19V) DNA persists lifelong in human tissues, but the cell type harbouring it remains unclear. We here explore B19V DNA distribution in B, T and monocyte cell lineages of recently excised tonsillar tissues from 77 individuals with an age range of 2–69 years. We show that B19V DNA is most frequent and abundant among B cells, and within them we find a B19V genotype that vanished from circulation >40 years ago. Since re-infection or re-activation are unlikely with this virus type, this finding supports the maintenance of pathogen-specific humoral immune responses as a consequence of B-cell long-term survival rather than continuous replenishment of the memory pool. Moreover, we …

0301 basic medicineSYNOVIAL TISSUEvirusesPalatine TonsilGeneral Physics and AstronomyAntibodies ViralGenotypeINFECTIONParvovirus B19 HumanREAL-TIME PCRChildCells CulturedB-LymphocytesMultidisciplinarybiologyQcell type harbouringvirus diseasesU937 CellsMiddle Aged3. Good healthHUMAN ERYTHROVIRUSESsolutReal-time polymerase chain reactionmedicine.anatomical_structurePLASMA-CELLSChild PreschoolGENETIC DIVERSITYAntibodyAdultCell typeAdolescentGenotypeBONE-MARROWScience030106 microbiologyQUANTITATIVE PCRta3111ArticleGeneral Biochemistry Genetics and Molecular BiologyCell LineParvoviridae InfectionsYoung Adult03 medical and health sciencesImmune systemCell Line TumormedicineHumansAgedB cellsparvovirus B19ParvovirusMonocyteta1182General ChemistryDNAvirus typesbiology.organism_classificationVirologyCELLULAR CORECEPTOR030104 developmental biologyCell cultureDNA ViralImmunologybiology.proteincells3111 BiomedicineNature Communications
researchProduct

Hot1 factor recruits co-activator Sub1 and elongation complex Spt4/5 to osmostress genes.

2016

Hyperosmotic stress response involves the adaptative mechanisms needed for cell survival. Under high osmolarity conditions, many stress response genes are activated by several unrelated transcription factors that are controlled by the Hog1 kinase. Osmostress transcription factor Hot1 regulates the expression of several genes involved in glycerol biosynthesis, and the presence of this transcription factor in their promoters is essential for RNApol II recruitment. The physical association between Hog1 and Hot1 activates this transcription factor and directs the RNA polymerase II localization at these promoters. We, herein, demonstrate that physical and genetic interactions exist between Hot1 …

0301 basic medicineSaccharomyces cerevisiae ProteinsChromosomal Proteins Non-HistoneResponse elementGenes FungalRNA polymerase IISaccharomyces cerevisiaeBiologyBiochemistry03 medical and health sciencesOpen Reading FramesOsmotic PressureRNA Processing Post-TranscriptionalPromoter Regions GeneticMolecular BiologyRNA polymerase II holoenzymeGeneticsGeneral transcription factorNuclear ProteinsPromoterCell BiologyDNA-Binding Proteins030104 developmental biologybiology.proteinTranscription factor II FTranscription factor II ETranscription factor II DTranscriptional Elongation FactorsProtein BindingTranscription FactorsThe Biochemical journal
researchProduct

Asymmetric cell division requires specific mechanisms for adjusting global transcription

2017

Most cells divide symmetrically into two approximately identical cells. There are many examples, however, of asymmetric cell division that can generate sibling cell size differences. Whereas physical asymmetric division mechanisms and cell fate consequences have been investigated, the specific problem caused by asymmetric division at the transcription level has not yet been addressed. In symmetrically dividing cells the nascent transcription rate increases in parallel to cell volume to compensate it by keeping the actualmRNA synthesis rate constant. This cannot apply to the yeast Saccharomyces cerevisiae, where this mechanism would provoke a neverending increasing mRNA synthesis rate in sma…

0301 basic medicineSaccharomyces cerevisiae ProteinsTranscription GeneticCell divisionRNA StabilitySaccharomyces cerevisiaeSaccharomyces cerevisiaeCell fate determinationBiotecnologia03 medical and health sciences0302 clinical medicineRNA Polymerase ITranscription (biology)GeneticsAsymmetric cell divisionRNA MessengerCèl·lules DivisióMolecular BiologyCell SizeMessenger RNAbiologyCell CycleRNADNA-Directed RNA Polymerasesbiology.organism_classificationYeastCell biology030104 developmental biologyCell Division030217 neurology & neurosurgeryNucleic Acids Research
researchProduct

The cellular growth rate controls overall mRNA turnover, and modulates either transcription or degradation rates of particular gene regulons

2015

We analyzed 80 different genomic experiments, and found a positive correlation between both RNA polymerase II transcription and mRNA degradation with growth rates in yeast. Thus, in spite of the marked variation in mRNA turnover, the total mRNA concentration remained approximately constant. Some genes, however, regulated their mRNA concentration by uncoupling mRNA stability from the transcription rate. Ribosome-related genes modulated their transcription rates to increase mRNA levels under fast growth. In contrast, mitochondria-related and stress-induced genes lowered mRNA levels by reducing mRNA stability or the transcription rate, respectively. We also detected these regulations within th…

0301 basic medicineSaccharomyces cerevisiae ProteinsTranscription GeneticRNA StabilityPopulationRNA polymerase IIRNA-binding proteinSaccharomyces cerevisiaeChromatin and EpigeneticsRegulonGenètica molecular03 medical and health sciencesTranscripció genèticaTranscription (biology)GeneticsGene RegulationRNA MessengereducationGeneRegulation of gene expressionGeneticsMessenger RNAeducation.field_of_studyOrganelle BiogenesisbiologyGene regulation Chromatin and EpigeneticsRNA-Binding ProteinsRNAGenes rRNACell biologyGenes Mitochondrial030104 developmental biologyGene Expression Regulationbiology.proteinRNARibosomes
researchProduct

Defects in the NC2 repressor affect both canonical and non-coding RNA polymerase II transcription initiation in yeast.

2016

BACKGROUND: The formation of the pre-initiation complex in eukaryotic genes is a key step in transcription initiation. The TATA-binding protein (TBP) is a universal component of all pre-initiation complexes for all kinds of RNA polymerase II (RNA pol II) genes, including those with a TATA or a TATA-like element, both those that encode proteins and those that transcribe non-coding RNAs. Mot1 and the negative cofactor 2 (NC2) complex are regulators of TBP, and it has been shown that depletion of these factors in yeast leads to defects in the control of transcription initiation that alter cryptic transcription levels in selected yeast loci. RESULTS: In order to cast light on the molecular func…

0301 basic medicineSaccharomyces cerevisiae ProteinsTranscription GeneticRNA polymerase IISaccharomyces cerevisiaeGenètica molecularNC203 medical and health sciencesSaccharomycesTranscripció genèticaGeneticsTATACryptic transcriptRNA polymerase II holoenzymeGeneticsbiologyGeneral transcription factorTATA-Box Binding ProteinTranscription initiationPhosphoproteinsTATA-Box Binding ProteinYeastRepressor Proteins030104 developmental biologyTATA-likebiology.proteinTranscription factor II FATP-Binding Cassette TransportersRNA Polymerase IITranscription factor II DTranscriptomeTranscription factor II BProteïnesTranscription factor II AResearch ArticleBiotechnologyTranscription Factors
researchProduct

The membrane-associated MUC1 improves adhesion of salivary MUC5B on buccal cells. Application to development of an in vitro cellular model of oral ep…

2015

Objectives: The mucosal pellicle is a thin layer of salivary proteins, mostly MUC5B mucins, anchored to epithelial oral cells. This pellicle is involved in protection of oral mucosae against abrasion, pathogenic microorganisms or chemical xenobiotics. The present study aimed at studying the involvement of MUC1 in mucosal pellicle formation and more specifically in salivary MUC5B binding using a cell-based model of oral epithelium. DESIGN: MUC1 mRNAs were not detected in TR146 cells, and therefore a stable cell line named TR146/MUC1 expressing this protein was developed by transfection. TR146 and TR146/MUC1 were incubated with human saliva in order to evaluate retention of MUC5B by epithelia…

0301 basic medicineSaliva[ SDV.AEN ] Life Sciences [q-bio]/Food and NutritionEpithelium0302 clinical medicineimmunocytochemistryTR146 cellsDental PellicleOral mucosa[ SDV.MHEP.CHI ] Life Sciences [q-bio]/Human health and pathology/SurgeryMUC1Microscopy ConfocalReverse Transcriptase Polymerase Chain ReactionGeneral MedicineTransfectionImmunohistochemistryMucin-5Bmedicine.anatomical_structuremucosal pelliclescanning electron microscopyImmunoblotting[SDV.MHEP.CHI]Life Sciences [q-bio]/Human health and pathology/SurgeryBiologyIn Vitro TechniquesTransfectionMicrobiologyCell Line03 medical and health sciences[ SDV.MHEP ] Life Sciences [q-bio]/Human health and pathologymedicineCell AdhesionHumansSalivary Proteins and PeptidesSalivaGeneral Dentistryoral mucosaMucinMucin-1Mouth Mucosa030206 dentistryCell BiologymucinsMolecular biologyIn vitroEpithelium030104 developmental biologyOtorhinolaryngologyCell cultureMicroscopy Electron Scanning[SDV.AEN]Life Sciences [q-bio]/Food and Nutrition[SDV.MHEP]Life Sciences [q-bio]/Human health and pathology
researchProduct