Search results for "104"

showing 10 items of 19508 documents

Communication: multireference equation of motion coupled cluster: a transform and diagonalize approach to electronic structure.

2014

The novel multireference equation-of-motion coupled-cluster (MREOM-CC) approaches provide versatile and accurate access to a large number of electronic states. The methods proceed by a sequence of many-body similarity transformations and a subsequent diagonalization of the transformed Hamiltonian over a compact subspace. The transformed Hamiltonian is a connected entity and preserves spin- and spatial symmetry properties of the original Hamiltonian, but is no longer Hermitean. The final diagonalization spaces are defined in terms of a complete active space (CAS) and limited excitations (1h, 1p, 2h, …) out of the CAS. The methods are invariant to rotations of orbitals within their respective…

010304 chemical physicsChemistryGeneral Physics and AstronomyEquations of motionElectronic structure010402 general chemistry7. Clean energy01 natural sciencesLinear subspace0104 chemical sciencessymbols.namesakeCoupled clusterAtomic orbitalQuantum mechanics0103 physical sciencessymbolsComplete active spacePhysical and Theoretical ChemistryHamiltonian (quantum mechanics)Subspace topologyThe Journal of chemical physics
researchProduct

Multi-scale multireference configuration interaction calculations for large systems using localized orbitals: Partition in zones

2012

A new multireference configuration interaction method using localised orbitals is proposed, in which a molecular system is divided into regions of unequal importance. The advantage of dealing with local orbitals, i.e., the possibility to neglect long range interaction is enhanced. Indeed, while in the zone of the molecule where the important phenomena occur, the interaction cut off may be as small as necessary to get relevant results, in the most part of the system it can be taken rather large, so that results of good quality may be obtained at a lower cost. The method is tested on several systems. In one of them, the definition of the various regions is not based on topological considerati…

010304 chemical physicsChemistryGeneral Physics and AstronomyMultireference configuration interactionMolecular orbital theory010402 general chemistry01 natural sciences0104 chemical sciencesLinear combination of atomic orbitalsMulti-configurational self-consistent field0103 physical sciencesMolecular orbitalComplete active spaceStatistical physicsPhysical and Theoretical ChemistryAtomic physicsBasis setNatural bond orbital
researchProduct

Hydrogen bonding interaction of N5H with water: A first principle calculations

2019

Abstract The cyclopentazol (N5H) and its anion counterpart (N5–) have been studied extensively over the years and detected in the gas phase as well as in solution recently. In the present investigation, an attempt has been made to understand the interaction with water molecule using first principle calculations. Nature of interactions have been studied using both energy decomposition analysis and atoms in molecule (AIM) theory calculations. Further, the strength of non-covalent interactions were analysed using IGMplots.

010304 chemical physicsChemistryHydrogen bond010402 general chemistryCondensed Matter PhysicsDecomposition analysis01 natural sciencesBiochemistry0104 chemical sciencesGas phaseIonChemical physics0103 physical sciencesFirst principleMolecule[CHIM]Chemical SciencesPhysical and Theoretical Chemistry
researchProduct

On the N1-H and N3-H Bond Dissociation in Uracil by Low Energy Electrons: A CASSCF/CASPT2 Study.

2015

The dissociative electron-attachment (DEA) phenomena at the N1-H and N3-H bonds observed experimentally at low energies (<3 eV) in uracil are studied with the CASSCF/CASPT2 methodology. Two valence-bound π(-) and two dissociative σ(-) states of the uracil anionic species, together with the ground state of the neutral molecule, are proven to contribute to the shapes appearing in the experimental DEA cross sections. Conical intersections (CI) between the π(-) and σ(-) are established as the structures which activate the DEA processes. The N1-H and N3-H DEA mechanisms in uracil are described, and experimental observations are interpreted on the basis of two factors: (1) the relative energy of …

010304 chemical physicsChemistryHydrogen bondUracilElectronBond breaking010402 general chemistry01 natural sciencesDissociation (chemistry)0104 chemical sciencesComputer Science ApplicationsCrystallographychemistry.chemical_compoundLow energyComputational chemistry0103 physical sciencesPhysical and Theoretical ChemistryGround stateNeutral moleculeJournal of chemical theory and computation
researchProduct

Quasi-RRHO approximation and DFT study for understanding the mechanism and kinetics of nitration reaction of benzonitrile with nitronium ion

2021

Abstract The nitration reaction of benzonitrile with nitronium cation, NO2+, has been studied within the Molecular Electron Density Theory at the MN15-L/aug-cc-pVTZ level of theory. For this electrophilic aromatic substitution (EAS) reaction, three regioisomeric reaction paths have been studied. Quasi-RRHO approximation was applied to consider the vibrational contribution to entropy and correct the Gibbs free energy profile of the reaction in the solvent phase. Benzonitrile is less nucleophilically activated than benzene due to the presence of the electron-withdrawing CN group the meta position is the more favorable reaction path of this EAS reaction. The analysis of ELF and AIM demonstrate…

010304 chemical physicsChemistryKineticsElectrophilic aromatic substitution010402 general chemistryCondensed Matter Physics01 natural sciencesBiochemistry0104 chemical sciencesGibbs free energychemistry.chemical_compoundBenzonitrilesymbols.namesakeMeta-Computational chemistryNitration0103 physical sciencessymbolsNitronium ionPhysical and Theoretical ChemistryBenzeneComputational and Theoretical Chemistry
researchProduct

Unexpected Substituent Effects in the Iso-Heterocyclic Boulton-Katritzky Rearrangement of 3-Aroylamino-5-methyl-1,2,4-oxadiazoles: A Mechanistic Stud…

2019

The kinetics of the iso-heterocyclic mononuclear rearrangement of some 3-aroylamino-5-methyl-1,2,4-ozadiazoles was carefully examined under largely variable acidic or alkaline conditions. This reaction may proceed via two different mechanistic pathways (an uncatalyzed and a base-catalyzed one), as accounted for also by the evaluation of the relevant activation parameters. Substituent effects, as quantified by means of the Hammett’s equation, appear relatively modest; however, they reveal some interesting anomalies, which enabled us to draw a very precise picture of the intimate reaction course.

010304 chemical physicsChemistryKineticsSubstituent124-oxadiazoleSettore CHIM/06 - Chimica OrganicaMononuclear Heterocyclic Rearrangement010402 general chemistry01 natural sciences0104 chemical sciencesKineticschemistry.chemical_compoundSubstituent effectComputational chemistry0103 physical sciencesPhysical and Theoretical ChemistryReaction mechanismThe journal of physical chemistry. A
researchProduct

A QM/MM Approach Using the AMOEBA Polarizable Embedding: From Ground State Energies to Electronic Excitations

2016

International audience; A fully polarizable implementation of the hybrid Quantum Mechanics/Molecular Mechanics approach is presented, where the classical environment is described through the AMOEBA polarizable force field. A variational formalism, offering a self-consistent 1 relaxation of both the MM induced dipoles and the QM electronic density is used for ground state energies and extended to electronic excitations in the framework of Time-Dependent Density Functional Theory combined with a state specific response of the classical part. An application to the calculation of the solvatochromism of the pyridinium N-phenolate betaine dye used to define the solvent ET30 scale is presented. Th…

010304 chemical physicsChemistryPolarizable force fieldSolvatochromismQuantum Chemistry010402 general chemistryElementary chargeQM/MM01 natural sciences0104 chemical sciencesComputer Science Applications[CHIM.THEO]Chemical Sciences/Theoretical and/or physical chemistryQM/MMQM/MM; Polarisable embedding; Physical and Theoretical ChemistryPolarizabilityQuantum mechanics0103 physical sciencesPolarisable embeddingDensity functional theorypolarizable force field AMOEBAPhysical and Theoretical ChemistryGround stateExcitationElectronic densityJournal of Chemical Theory and Computation
researchProduct

Origin of Enzymatic Kinetic Isotope Effects in Human Purine Nucleoside Phosphorylase

2017

Here we report a study of the effect of heavy isotope labeling on the reaction catalyzed by human purine nucleoside phosphorylase (hPNP) to elucidate the origin of its catalytic effect and of the enzymatic kinetic isotope effect (EKIE). Using quantum mechanical and molecular mechanical (QM/MM) molecular dynamics (MD) simulations, we study the mechanism of the hPNP enzyme and the dynamic effects by means of the calculation of the recrossing transmission coefficient. A free energy surface (FES), as a function of both a chemical and an environmental coordinate, is obtained to show the role of the environment on the chemical reaction. Analysis of reactive and nonreactive trajectories allows us …

010304 chemical physicsChemistryPurine nucleoside phosphorylasevariational transition state theoryGeneral Chemistry010402 general chemistryenzyme catalysis01 natural sciencesChemical reactionCatalysis0104 chemical sciencesEnzyme catalysisCatalysisSolventMolecular dynamicsComputational chemistryenzymatic kinetic isotope effect0103 physical sciencesKinetic isotope effectMoleculeQM/MM methodsprotein motionsACS Catalysis
researchProduct

A quantum dynamics study of the benzopyran ring opening guided by laser pulses

2014

Abstract The ring-opening photoisomerization of benzopyran, which occurs via a photochemical route involving a conical intersection, has been studied with quantum dynamics calculations using the multi-configuration time-dependent Hartree method (MCTDH). We introduce a mechanistic strategy to control the conversion of benzopyran to merocyanine with laser pulses. We use a six-dimensional model developed in a previous work for the potential energy surfaces (PES) based on an extension of the vibronic-coupling Hamiltonian model (diabatization method by ansatz), which depends on the most active degrees of freedom. The main objective of these quantum dynamics simulations is to provide a set of str…

010304 chemical physicsChemistryQuantum dynamicsDegrees of freedom (physics and chemistry)General Physics and AstronomyHartreeConical intersection010402 general chemistry01 natural sciencesPotential energyMolecular physics0104 chemical sciences[CHIM.THEO]Chemical Sciences/Theoretical and/or physical chemistrysymbols.namesakeStark effectComputational chemistry0103 physical sciences[ CHIM.THEO ] Chemical Sciences/Theoretical and/or physical chemistrysymbolsPhysical and Theoretical ChemistryGround stateAdiabatic processComputingMilieux_MISCELLANEOUS
researchProduct

Quantum dynamics of 16O in collision with ortho- and para-17O17O

2017

Abstract We report full quantum dynamical observables, such as integral and differential cross sections and rate constants, for the 16 O +  17 O 17 O reactive collision process. We particularly emphasize the effect coming from the nonzero nuclear spin of 17 O, leading to two nuclear spin isomers of 34 O 2 , ortho- and para- 34 O 2 which can be studied independently and behave differently. A comparison with the 16 O +  18 O 18 O collision is given. We find that processes involving 17 O 17 O are always faster than with 18 O 18 O.

010304 chemical physicsChemistryQuantum dynamicsGeneral Physics and AstronomyObservable010402 general chemistryCollision01 natural sciences0104 chemical sciencesReaction rate constant0103 physical sciencesKinetic isotope effectPhysical chemistryPhysical and Theoretical ChemistryAtomic physicsQuantumChemical Physics Letters
researchProduct