Search results for "14R10"

showing 2 items of 2 documents

Locally tame plane polynomial automorphisms

2010

Abstract For automorphisms of a polynomial ring in two variables over a domain R , we show that local tameness implies global tameness provided that every 2-generated locally free R -module of rank 1 is free. We give examples illustrating this property.

PolynomialRank (linear algebra)Polynomial ringPolynomial automorphismsCommutative Algebra (math.AC)01 natural sciencesCombinatoricsMathematics - Algebraic GeometryFOS: MathematicsAlgebra en Topologie0101 mathematicsAlgebraic Geometry (math.AG)MathematicsAlgebra and TopologyAlgebra and Number TheoryPlane (geometry)local tameness010102 general mathematicsA domainMathematics - Commutative AlgebraAutomorphism[ MATH.MATH-AG ] Mathematics [math]/Algebraic Geometry [math.AG]010101 applied mathematicsComputingMethodologies_DOCUMENTANDTEXTPROCESSING[MATH.MATH-AG]Mathematics [math]/Algebraic Geometry [math.AG]14R10Journal of Pure and Applied Algebra
researchProduct

Embeddings of a family of Danielewski hypersurfaces and certain \C^+-actions on \C^3

2006

International audience; We consider the family of complex polynomials in \C[x,y,z] of the form x^2y-z^2-xq(x,z). Two such polynomials P_1 and P_2 are equivalent if there is an automorphism \varphi of \C[x,y,z] such that \varphi(P_1)=P_2. We give a complete classification of the equivalence classes of these polynomials in the algebraic and analytic category.

14R10; 14R05 ; 14L30equivalence of polynomialsDanielewski surfacesstable equivalence[MATH.MATH-AG] Mathematics [math]/Algebraic Geometry [math.AG][MATH.MATH-AG]Mathematics [math]/Algebraic Geometry [math.AG]Physics::Atomic Physicsalgebraic embeddings[ MATH.MATH-AG ] Mathematics [math]/Algebraic Geometry [math.AG]
researchProduct