Search results for "30L99"

showing 10 items of 12 documents

The Choquet and Kellogg properties for the fine topology when $p=1$ in metric spaces

2017

In the setting of a complete metric space that is equipped with a doubling measure and supports a Poincar´e inequality, we prove the fine Kellogg property, the quasi-Lindel¨of principle, and the Choquet property for the fine topology in the case p = 1. Dans un contexte d’espace m´etrique complet muni d’une mesure doublante et supportant une in´egalit´e de Poincar´e, nous d´emontrons la propri´et´e fine de Kellogg, le quasi-principe de Lindel¨of, et la propri´et´e de Choquet pour la topologie fine dans le cas p = 1. peerReviewed

Pure mathematicsProperty (philosophy)1-fine topologyGeneral MathematicsPoincaré inequalityMathematics::General Topology01 natural sciencesMeasure (mathematics)Complete metric spacefunktioteoriasymbols.namesakeMathematics - Metric GeometryFOS: Mathematics0101 mathematicsMathematicsApplied Mathematics010102 general mathematicsta111Metric Geometry (math.MG)30L99 31E05 26B30function of bounded variationfine Kellogg propertymetriset avaruudet010101 applied mathematicsMetric spacemetric measure spacequasi-Lindelöf principleChoquet propertysymbolspotentiaaliteoriaFine topology
researchProduct

Approximation by uniform domains in doubling quasiconvex metric spaces

2020

We show that any bounded domain in a doubling quasiconvex metric space can be approximated from inside and outside by uniform domains.

Pure mathematicsPrimary 30L99. Secondary 46E35 26B30Algebraic geometry01 natural sciencesDomain (mathematical analysis)funktioteoriaQuasiconvex functionMathematics::Group TheoryquasiconvexityMathematics - Metric Geometry0103 physical sciencesFOS: Mathematics0101 mathematicsuniform domainComputer Science::DatabasesMathematicsPartial differential equationFunctional analysis010102 general mathematicsMetric Geometry (math.MG)General Medicinemetriset avaruudetMetric spaceBounded functionSobolev extension010307 mathematical physicsfunktionaalianalyysi
researchProduct

An upper gradient approach to weakly differentiable cochains

2012

Abstract The aim of the present paper is to define a notion of weakly differentiable cochain in the generality of metric measure spaces and to study basic properties of such cochains. Our cochains are (sub)additive functionals on a subspace of chains, and a suitable notion of chains in metric spaces is given by Ambrosio–Kirchheimʼs theory of metric currents. The notion of weak differentiability we introduce is in analogy with Heinonen–Koskelaʼs concept of upper gradients of functions. In one of the main results of our paper, we prove continuity estimates for cochains with p-integrable upper gradient in n-dimensional Lie groups endowed with a left-invariant Finsler metric. Our result general…

Mathematics - Differential GeometryPure mathematics49Q15 46E35 53C65 49J52 30L99Applied MathematicsGeneral Mathematicsta111010102 general mathematicsMathematical analysisLie group01 natural sciencesMeasure (mathematics)Cohomology010101 applied mathematicsSobolev spaceMetric spaceMathematics - Analysis of PDEsDifferential Geometry (math.DG)Hausdorff dimensionMetric (mathematics)FOS: MathematicsDifferentiable function0101 mathematicsAnalysis of PDEs (math.AP)Mathematics
researchProduct

Sharp capacity estimates for annuli in weighted R^n and in metric spaces

2017

We obtain estimates for the nonlinear variational capacity of annuli in weighted R^n and in metric spaces. We introduce four different (pointwise) exponent sets, show that they all play fundamental roles for capacity estimates, and also demonstrate that whether an end point of an exponent set is attained or not is important. As a consequence of our estimates we obtain, for instance, criteria for points to have zero (resp. positive) capacity. Our discussion holds in rather general metric spaces, including Carnot groups and many manifolds, but it is just as relevant on weighted R^n. Indeed, to illustrate the sharpness of our estimates, we give several examples of radially weighted R^n, which …

31C45 (Primary) 30C65 30L99 31B15 31C15 31E0 (Secondary)annulusmetric spacequasiconformal mappingMathematical Analysisexponent setsp-admissible weightSobolev spaceradial weightMathematics - Analysis of PDEsAnnulus; Doubling measure; Exponent sets; Metric space; Newtonian space; p-admissible weight; Poincare inequality; Quasiconformal mapping; Radial weight; Sobolev space; Variational capacityMatematisk analysPoincaré inequalitydoubling measureFOS: MathematicsNewtonian spacevariational capacityAnalysis of PDEs (math.AP)
researchProduct

Trace and density results on regular trees

2019

We give characterizations for the existence of traces for first order Sobolev spaces defined on regular trees.

Trace (linear algebra)Mathematics::Analysis of PDEsBoundary (topology)01 natural sciencesMeasure (mathematics)Potential theorySet (abstract data type)Combinatoricsregular treeMathematics - Metric Geometry0103 physical sciencesEuclidean geometryClassical Analysis and ODEs (math.CA)FOS: Mathematics0101 mathematicsMathematicsdensityMathematics::Functional Analysis010102 general mathematicsMetric Geometry (math.MG)Functional Analysis (math.FA)Sobolev spaceMathematics - Functional AnalysisMathematics - Classical Analysis and ODEs010307 mathematical physicsTree (set theory)46E35 30L99funktionaalianalyysiAnalysisboundary traceNewtonian space
researchProduct

Admissibility versus Ap-Conditions on Regular Trees

2020

We show that the combination of doubling and (1, p)-Poincaré inequality is equivalent to a version of the Ap-condition on rooted K-ary trees. peerReviewed

QA299.6-433ap-conditionpoincaré inequalityAp-condition31c45funktioteoria30l99regular treePoincaré inequalitydoubling measure46e35potentiaaliteoriafunktionaalianalyysiAnalysis
researchProduct

Volume growth, capacity estimates, p-parabolicity and sharp integrability properties of p-harmonic Green functions

2023

In a complete metric space equipped with a doubling measure supporting a $p$-Poincar\'e inequality, we prove sharp growth and integrability results for $p$-harmonic Green functions and their minimal $p$-weak upper gradients. We show that these properties are determined by the growth of the underlying measure near the singularity. Corresponding results are obtained also for more general $p$-harmonic functions with poles, as well as for singular solutions of elliptic differential equations in divergence form on weighted $\mathbf{R}^n$ and on manifolds. The proofs are based on a new general capacity estimate for annuli, which implies precise pointwise estimates for $p$-harmonic Green functions…

Mathematics - Analysis of PDEsGeneral MathematicsFOS: MathematicsPrimary: 31C45 Secondary: 30L99 31C12 31C15 31E05 35J08 35J92 46E36 49Q20AnalysisAnalysis of PDEs (math.AP)Journal d'Analyse Mathématique
researchProduct

The annular decay property and capacity estimates for thin annuli

2016

We obtain upper and lower bounds for the nonlinear variational capacity of thin annuli in weighted $\mathbf{R}^n$ and in metric spaces, primarily under the assumptions of an annular decay property and a Poincar\'e inequality. In particular, if the measure has the $1$-annular decay property at $x_0$ and the metric space supports a pointwise $1$-Poincar\'e inequality at $x_0$, then the upper and lower bounds are comparable and we get a two-sided estimate for thin annuli centred at $x_0$, which generalizes the known estimate for the usual variational capacity in unweighted $\mathbf{R}^n$. Most of our estimates are sharp, which we show by supplying several key counterexamples. We also character…

Pure mathematicsProperty (philosophy)General Mathematicsthin annulusPoincaré inequality01 natural sciencesMeasure (mathematics)Upper and lower boundssymbols.namesakeMathematics - Analysis of PDEsMathematics - Metric Geometry0103 physical sciencesFOS: Mathematics0101 mathematicsMathematicsPointwiseApplied Mathematics010102 general mathematicsmetric spaceMetric Geometry (math.MG)31E05 (Primary) 30L99 31C15 31C45 (Secondary)kapasiteettiSobolev spaceSobolev spaceNonlinear systemMetric spaceannular decay propertyPoincaré inequalitydoubling measuresymbolsupper gradient010307 mathematical physicsweighted RnAnalysis of PDEs (math.AP)Newtonian spacevariational capacity
researchProduct

Density of Lipschitz functions in energy

2020

In this paper, we show that the density in energy of Lipschitz functions in a Sobolev space $N^{1,p}(X)$ holds for all $p\in [1,\infty)$ whenever the space $X$ is complete and separable and the measure is Radon and finite on balls. Emphatically, $p=1$ is allowed. We also give a few corollaries and pose questions for future work. The proof is direct and does not involve the usual flow techniques from prior work. It also yields a new approximation technique, which has not appeared in prior work. Notable with all of this is that we do not use any form of Poincar\'e inequality or doubling assumption. The techniques are flexible and suggest a unification of a variety of existing literature on th…

Primary 46E35 Secondary 30L99 26B30 28A12Mathematics - Classical Analysis and ODEsApplied MathematicsClassical Analysis and ODEs (math.CA)FOS: MathematicsfunktionaalianalyysiAnalysis
researchProduct

Existence and almost uniqueness for p -harmonic Green functions on bounded domains in metric spaces

2020

We study ($p$-harmonic) singular functions, defined by means of upper gradients, in bounded domains in metric measure spaces. It is shown that singular functions exist if and only if the complement of the domain has positive capacity, and that they satisfy very precise capacitary identities for superlevel sets. Suitably normalized singular functions are called Green functions. Uniqueness of Green functions is largely an open problem beyond unweighted $\mathbf{R}^n$, but we show that all Green functions (in a given domain and with the same singularity) are comparable. As a consequence, for $p$-harmonic functions with a given pole we obtain a similar comparison result near the pole. Various c…

Pure mathematicsCapacitary potential; Doubling measure; Metric space; p-harmonic Green function; Poincar? inequality; Singular function31C45 (Primary) 30L99 31C15 31E05 35J92 49Q20 (Secondary)Harmonic (mathematics)Mathematical Analysis01 natural sciencesMeasure (mathematics)Domain (mathematical analysis)Mathematics - Analysis of PDEscapacitary potentialMatematisk analysFOS: MathematicsUniqueness0101 mathematicsMathematicsComplement (set theory)p-harmonicApplied Mathematics010102 general mathematicsmetric spacemetriset avaruudet010101 applied mathematicsMetric spacePoincaré inequalityBounded functionMetric (mathematics)doubling measurepotentiaaliteoriasingular functiongreen functionAnalysisAnalysis of PDEs (math.AP)
researchProduct