Search results for "35j20"

showing 10 items of 13 documents

Critical points in open sublevels and multiple solutions for parameter-depending quasilinear elliptic equations

2014

We investigate the existence of multiple nontrivial solutions of a quasilinear elliptic Dirichlet problem depending on a parameter $\lambda>0$ of the form $$ -\Delta_pu=\lambda f(u)\quad\mbox{in }\ \Omega,\quad u=0\quad\mbox{on }\ \partial\Omega, $$ where $\Omega\subset \mathbb{R}^N$ is a bounded domain, $\Delta_p$, $1 < p < +\infty$, is the $p$-Laplacian, and $f: \mathbb{R}\to \mathbb{R}$ is a continuous function satisfying a subcritical growth condition. More precisely, we establish a variational approach that when combined with differential inequality techniques, allows us to explicitly describe intervals for the parameter $\lambda$ for which the problem under consideration admits nontri…

35B30Applied Mathematics35B3835J20p-Laplacian Dirichlet problemAnalysisAdvances in Differential Equations
researchProduct

A double mean field equation related to a curvature prescription problem

2019

We study a double mean field-type PDE related to a prescribed curvature problem on compacts surfaces with boundary. We provide a general blow-up analysis, then a Moser-Trudinger inequality, which gives energy-minimizing solutions for some range of parameters. Finally, we provide existence of min-max solutions for a wider range of parameters, which is dense in the plane if $��$ is not simply connected.

Blow–up analysiPlane (geometry)Applied Mathematics010102 general mathematicsMathematics::Analysis of PDEs35J20 58J32Boundary (topology)Unit normal vectorCurvature01 natural sciencesConformal metric010101 applied mathematicsMathematics - Analysis of PDEsVariational methodsMean field equationSimply connected spaceFOS: Mathematics0101 mathematicsPrescribed curvature problemAnalysisMathematical physicsMathematicsAnalysis of PDEs (math.AP)
researchProduct

Nonlinear Nonhomogeneous Robin Problems with Almost Critical and Partially Concave Reaction

2020

We consider a nonlinear Robin problem driven by a nonhomogeneous differential operator, with reaction which exhibits the competition of two Caratheodory terms. One is parametric, $$(p-1)$$-sublinear with a partially concave nonlinearity near zero. The other is $$(p-1)$$-superlinear and has almost critical growth. Exploiting the special geometry of the problem, we prove a bifurcation-type result, describing the changes in the set of positive solutions as the parameter $$\lambda >0$$ varies.

Competition phenomenacompetition phenomenanonlinear maximum principleAlmost critical growthLambda01 natural sciencesSet (abstract data type)symbols.namesakeMathematics - Analysis of PDEsSettore MAT/05 - Analisi Matematica0103 physical sciencesFOS: Mathematics0101 mathematicsbifurcation-type resultMathematicsParametric statisticsNonlinear regularity35J20 35J60010102 general mathematicsMathematical analysisZero (complex analysis)udc:517.956.2Differential operatorBifurcation-type resultalmost critical growthNonlinear systemDifferential geometryFourier analysissymbolsnonlinear regularity010307 mathematical physicsGeometry and TopologyNonlinear maximum principleStrong comparison principlestrong comparison principleAnalysis of PDEs (math.AP)
researchProduct

Elliptic equations involving the $1$-Laplacian and a subcritical source term

2017

In this paper we deal with a Dirichlet problem for an elliptic equation involving the $1$-Laplacian operator and a source term. We prove that, when the growth of the source is subcritical, there exist two bounded nontrivial solutions to our problem. Moreover, a Pohozaev type identity is proved, which holds even when the growth is supercritical. We also show explicit examples of our results.

Dirichlet problemApplied Mathematics010102 general mathematicsMathematics::Analysis of PDEsType (model theory)01 natural sciencesTerm (time)010101 applied mathematicsElliptic curveIdentity (mathematics)Operator (computer programming)Mathematics - Analysis of PDEsBounded functionFOS: MathematicsApplied mathematics0101 mathematicsLaplace operator35J75 35J20 35J92AnalysisAnalysis of PDEs (math.AP)Mathematics
researchProduct

Calder\'on's problem for p-Laplace type equations

2016

We investigate a generalization of Calder\'on's problem of recovering the conductivity coefficient in a conductivity equation from boundary measurements. As a model equation we consider the p-conductivity equation with p strictly between one and infinity, which reduces to the standard conductivity equation when p equals two, and to the p-Laplace equation when the conductivity is constant. The thesis consists of results on the direct problem, boundary determination and detecting inclusions. We formulate the equation as a variational problem also when the conductivity may be zero or infinity in large sets. As a boundary determination result we recover the first order derivative of a smooth co…

Mathematics - Analysis of PDEs35R30 (Primary) 35J92 35R05 35D30 35Q60 35Q79 35J20 35J25 35H99 35A15 35A01 35A02 80A23 (Secondary)
researchProduct

A minimization problem with free boundary and its application to inverse scattering problems

2023

We study a minimization problem with free boundary, resulting in hybrid quadrature domains for the Helmholtz equation, as well as some application to inverse scattering problem.

Mathematics - Analysis of PDEsFOS: MathematicsAnalysis of PDEs (math.AP)35J05 35J15 35J20 35R30 35R35
researchProduct

Multiplicity of positive solutions for a degenerate nonlocal problem with p-Laplacian

2021

Abstract We consider a nonlinear boundary value problem with degenerate nonlocal term depending on the L q -norm of the solution and the p-Laplace operator. We prove the multiplicity of positive solutions for the problem, where the number of solutions doubles the number of “positive bumps” of the degenerate term. The solutions are also ordered according to their L q -norms.

PhysicsQA299.6-433sign-changing coefficientmultiple fixed pointsNonlocal problemsp-LaplacianDegenerate energy levels35j2035j25Settore MAT/05 - Analisi Matematica35q74p-LaplacianMultiplicity (chemistry)AnalysisMathematical physicsAdvances in Nonlinear Analysis
researchProduct

The behavior of solutions of a parametric weighted (p, q)-laplacian equation

2021

&lt;abstract&gt;&lt;p&gt;We study the behavior of solutions for the parametric equation&lt;/p&gt; &lt;p&gt;&lt;disp-formula&gt; &lt;label/&gt; &lt;tex-math id="FE1"&gt; \begin{document}$ -\Delta_{p}^{a_1} u(z)-\Delta_{q}^{a_2} u(z) = \lambda |u(z)|^{q-2} u(z)+f(z,u(z)) \quad \mbox{in } \Omega,\, \lambda &amp;gt;0, $\end{document} &lt;/tex-math&gt;&lt;/disp-formula&gt;&lt;/p&gt; &lt;p&gt;under Dirichlet condition, where $ \Omega \subseteq \mathbb{R}^N $ is a bounded domain with a $ C^2 $-boundary $ \partial \Omega $, $ a_1, a_2 \in L^\infty(\Omega) $ with $ a_1(z), a_2(z) &amp;gt; 0 $ for a.a. $ z \in \Omega $, $ p, q \in (1, \infty) $ and $ \Delta_{p}^{a_1}, \Delta_{q}^{a_2} $ are weighted …

Positive and negative solutionsGeneral MathematicsNodal solutionsLambdaOmegaCombinatoricssymbols.namesakeMathematics - Analysis of PDEsSettore MAT/05 - Analisi MatematicaQA1-939FOS: Mathematicspositive and negative solutionsResonant Carathéodory functionudc:517.956Physics35J20 35J60Spectrum (functional analysis)weighted (pWeighted (p q)-LaplacianDifferential operatorresonant Carathéodory functionweighted (pq)-LaplacianDirichlet boundary conditionBounded functionq)-laplacianDomain (ring theory)symbolsnodal solutionsParametric power termLaplace operatorMathematicsparametric power termAnalysis of PDEs (math.AP)
researchProduct

Nonlinear scalar field equations with general nonlinearity

2018

Consider the nonlinear scalar field equation \begin{equation} \label{a1} -\Delta{u}= f(u)\quad\text{in}~\mathbb{R}^N,\qquad u\in H^1(\mathbb{R}^N), \end{equation} where $N\geq3$ and $f$ satisfies the general Berestycki-Lions conditions. We are interested in the existence of positive ground states, of nonradial solutions and in the multiplicity of radial and nonradial solutions. Very recently Mederski [30] made a major advance in that direction through the development, in an abstract setting, of a new critical point theory for constrained functionals. In this paper we propose an alternative, more elementary approach, which permits to recover Mederski's results on the scalar field equation. T…

Pure mathematicsMathematics::Analysis of PDEsMonotonic function2010 MSC: 35J20 35J6001 natural sciencesMathematics - Analysis of PDEsFOS: Mathematics[MATH.MATH-AP]Mathematics [math]/Analysis of PDEs [math.AP]Mountain pass0101 mathematicsMathematicsgeographygeography.geographical_feature_category35J20 35J60Applied Mathematics010102 general mathematicsMultiplicity (mathematics)Monotonicity trickNonradial solutions010101 applied mathematicsNonlinear systemBerestycki-Lions nonlinearityBounded functionNonlinear scalar field equationsScalar fieldAnalysisAnalysis of PDEs (math.AP)
researchProduct

Reliable numerical solution of a class of nonlinear elliptic problems generated by the Poisson-Boltzmann equation

2020

We consider a class of nonlinear elliptic problems associated with models in biophysics, which are described by the Poisson-Boltzmann equation (PBE). We prove mathematical correctness of the problem, study a suitable class of approximations, and deduce guaranteed and fully computable bounds of approximation errors. The latter goal is achieved by means of the approach suggested in [S. Repin, A posteriori error estimation for variational problems with uniformly convex functionals. Math. Comp., 69:481-500, 2000] for convex variational problems. Moreover, we establish the error identity, which defines the error measure natural for the considered class of problems and show that it yields computa…

a priori error estimatesClass (set theory)Correctness010103 numerical & computational mathematics01 natural sciencesMeasure (mathematics)guaranteed and efficient a posteriori error boundsFOS: MathematicsApplied mathematicsPolygon meshMathematics - Numerical Analysis0101 mathematicserror indicators and adaptive mesh refinementMathematicsNumerical AnalysisApplied MathematicsRegular polygonNumerical Analysis (math.NA)convergence of finite element approximationsLipschitz continuity010101 applied mathematicsComputational MathematicsNonlinear systemexistence and uniqueness of solutionssemilinear partial differential equations65J15 49M29 65N15 65N30 65N50 35J20MathematikA priori and a posterioriPoisson-Boltzmann equationdifferentiaaliyhtälöt
researchProduct