Search results for "37K10"

showing 8 items of 28 documents

On the numerical evaluation of algebro-geometric solutions to integrable equations

2011

Physically meaningful periodic solutions to certain integrable partial differential equations are given in terms of multi-dimensional theta functions associated to real Riemann surfaces. Typical analytical problems in the numerical evaluation of these solutions are studied. In the case of hyperelliptic surfaces efficient algorithms exist even for almost degenerate surfaces. This allows the numerical study of solitonic limits. For general real Riemann surfaces, the choice of a homology basis adapted to the anti-holomorphic involution is important for a convenient formulation of the solutions and smoothness conditions. Since existing algorithms for algebraic curves produce a homology basis no…

Pure mathematicsExplicit formulaeGeneral Physics and AstronomyFOS: Physical sciencesTheta functionHomology (mathematics)37K10 14Q05 35Q5501 natural sciencessymbols.namesakeMathematics - Algebraic Geometry[MATH.MATH-MP]Mathematics [math]/Mathematical Physics [math-ph]0103 physical sciencesFOS: Mathematics0101 mathematics[MATH.MATH-MP] Mathematics [math]/Mathematical Physics [math-ph]010306 general physicsAlgebraic Geometry (math.AG)Mathematical PhysicsMathematicsPartial differential equationNonlinear Sciences - Exactly Solvable and Integrable SystemsApplied MathematicsRiemann surface010102 general mathematics[ MATH.MATH-MP ] Mathematics [math]/Mathematical Physics [math-ph]Statistical and Nonlinear PhysicsMathematical Physics (math-ph)Nonlinear systemsymbolsAlgebraic curveExactly Solvable and Integrable Systems (nlin.SI)Symplectic geometry
researchProduct

An attempt to classification of the quasi rational solutions to the NLS equation

2015

Based on a representation in terms of determinants of order 2N , an attempt to classification of quasi rational solutions to the one dimensional focusing nonlinear Schrödinger equation (NLS) is given and several conjectures about the structure of the solutions are also formulated. These solutions can be written as a product of an exponential depending on t by a quotient of two polynomials of degree N (N + 1) in x and t depending on 2N −2 parameters. It is remarkable to mention that in this representation, when all parameters are equal to 0, we recover the PN breathers.

[MATH.MATH-MP]Mathematics [math]/Mathematical Physics [math-ph][ MATH.MATH-MP ] Mathematics [math]/Mathematical Physics [math-ph][MATH.MATH-MP] Mathematics [math]/Mathematical Physics [math-ph]37K10 33Q55 4710A- 4735Fg 4754Bd
researchProduct

N-order rational solutions to the Johnson equation depending on 2N - 2 parameter

2017

International audience; We construct rational solutions of order N depending on 2N-2 parameters. They can be written as a quotient of 2 polynomials of degree 2N(N+1) in x, t and 2N(N+1) in y depending on 2N-2 parameters. We explicitly construct the expressions of the rational solutions of order 4 depending on 6 real parameters and we study the patterns of their modulus in the plane (x,y) and their evolution according to time and parameters a1,a2,a3,b1,b2,b3.

[MATH.MATH-MP]Mathematics [math]/Mathematical Physics [math-ph][ MATH.MATH-MP ] Mathematics [math]/Mathematical Physics [math-ph][MATH.MATH-MP] Mathematics [math]/Mathematical Physics [math-ph]PACS numbers : 33Q55 37K10 47.10A- 47.35.Fg 47.54.Bd
researchProduct

Multi-parametric families solutions to the Burgers equation

2021

We construct 2N real parameter solutions to the Burgers' equation in terms of determinant of order N and we call these solutions, N order solutions. We deduce general expressions of these solutions in terms of exponentials and study the patterns of these solutions in functions of the parameters for N = 1 until N = 4.

[MATH.MATH-MP]Mathematics [math]/Mathematical Physics [math-ph][MATH.MATH-MP] Mathematics [math]/Mathematical Physics [math-ph]PACS numbers : 33Q55 37K10 47.10A- 47.35.Fg 47.54.BdBurgers equation
researchProduct

Families of solutions to the KPI equation and the structure of their rational representations of order N

2018

We construct solutions to the Kadomtsev-Petviashvili equation (KPI) in terms of Fredholm determinants. We deduce solutions written as a quotient of wronskians of order 2N. These solutions called solutions of order N depend on 2N − 1 parameters. They can also be written as a quotient of two polynomials of degree 2N (N + 1) in x, y and t depending on 2N − 2 parameters. The maximum of the modulus of these solutions at order N is equal to 2(2N + 1) 2. We explicitly construct the expressions until the order 6 and we study the patterns of their modulus in the plane (x, y) and their evolution according to time and parameters.

numbers : 33Q55[MATH.MATH-MP]Mathematics [math]/Mathematical Physics [math-ph]4710A-[MATH.MATH-MP] Mathematics [math]/Mathematical Physics [math-ph]37K104735Fg4754Bd
researchProduct

8-parameter solutions of fifth order to the Johnson equation

2019

We give different representations of the solutions of the Johnson equation with parameters. First, an expression in terms of Fredholm determinants is given; we give also a representation of the solutions written as a quotient of wronskians of order 2N. These solutions of order N depend on 2N − 1 parameters. When one of these parameters tends to zero, we obtain N order rational solutions expressed as a quotient of two polyno-mials of degree 2N (N +1) in x, t and 4N (N +1) in y depending on 2N −2 parameters. Here, we explicitly construct the expressions of the rational solutions of order 5 depending on 8 real parameters and we study the patterns of their modulus in the plane (x, y) and their …

rogue waves PACS numbers : 33Q55ratio- nal solutionswronskiansrational solutions[MATH.MATH-MP]Mathematics [math]/Mathematical Physics [math-ph]Johnson equation4710A-[MATH.MATH-MP] Mathematics [math]/Mathematical Physics [math-ph]37K104735Fg4754BdFredholm determinants
researchProduct

From first to fourth order rational solutions to the Boussinesq equation

2020

Rational solutions to the Boussinesq equation are constructed as a quotient of two polynomials in x and t. For each positive integer N , the numerator is a polynomial of degree N (N + 1) − 2 in x and t, while the denominator is a polynomial of degree N (N + 1) in x and t. So we obtain a hierarchy of rational solutions depending on an integer N called the order of the solution. We construct explicit expressions of these rational solutions for N = 1 to 4.

rogue waves PACS numbers : 33Q55rational solutions[MATH.MATH-MP]Mathematics [math]/Mathematical Physics [math-ph]4710A-[MATH.MATH-MP] Mathematics [math]/Mathematical Physics [math-ph]37K104735Fg4754BdBoussinesq equation
researchProduct

First and second order rational solutions to the Johnson equation and rogue waves

2018

Rational solutions to the Johnson equation are constructed as a quotient of two polynomials in x, y and t depending on several real parameters. We obtain an infinite hierarchy of rational solutions written in terms of polynomials of degrees 2N (N + 1) in x, and t, 4N (N + 1) in y, depending on 2N − 2 real parameters for each positive integer N. We construct explicit expressions of the solutions in the cases N = 1 and N = 2 which are given in the following. We study the evolution of the solutions by constructing the patterns of their modulus in the (x, y) plane, and this for different values of parameters.

wronskiansJohnson equation4710A-[ MATH.MATH-MP ] Mathematics [math]/Mathematical Physics [math-ph]ratio-rogue wavesnal solutions37K10[MATH.MATH-MP]Mathematics [math]/Mathematical Physics [math-ph][MATH.MATH-MP] Mathematics [math]/Mathematical Physics [math-ph]33Q554735FgPACS numbers :4754BdFredholm determinants
researchProduct