Search results for "405"

showing 10 items of 3208 documents

3,5-Dimethoxy-4'-methylbiphenyl

2013

The title compound, C15H16O2, crystallizes with three independent mol­ecules in the asymmetric unit. The intra­molecular torsion angle between the aromatic rings of each mol­ecule are −36.4 (3), 41.3 (3) and −37.8 (3)°. In the crystal, the complicated packing of the mol­ecules forms wave-like layers along the b and c axes. The mol­ecules are connected via extensive meth­oxy–phenyl C—H…π inter­actions. A weak C—H…O hydrogen-bonding network also exists between meth­oxy O atoms and aromatic or meth­oxy H atoms.

röntgendiffraktiocrystal structuredendrimeeri prekursori010405 organic chemistryChemistryX-ray DiffractionAromaticitykiderakenneGeneral ChemistryDihedral angle010402 general chemistryCondensed Matter PhysicsBioinformaticsOrganic Papers01 natural sciences0104 chemical sciences3. Good healthCrystalCrystallographydendrimer precursorGeneral Materials Scienceta116
researchProduct

3,4-Dimethoxy-4'-methylbiphenyl

2013

In the title compound, C15H16O2, the dihedral angle between the planes of the aromatic rings is 30.5 (2). In the crystal, molecules are linked via C—HO hydrogen bonds and C— H interactions, forming a two-dimensional network lying parallel to (100). peerReviewed

röntgendiffraktiocrystal structuredendrimeeri prekursori010405 organic chemistryHydrogen bondChemistryAromaticitykiderakenneGeneral ChemistryDihedral angle010402 general chemistryCondensed Matter Physics01 natural sciencesOrganic PapersX-ray diffraction0104 chemical sciences3. Good healthCrystalCrystallographydendrimer precursorGeneral Materials Scienceta116Acta Crystallographica Section E-Structure Reports Online
researchProduct

Methyl 3',5'-dimethoxybiphenyl-4-carboxylate

2013

In the title compound, C16H16O4, the dihedral angle between the benzene rings is 28.9 (2)°. In the crystal, mol­ecules are packed in layers parallel to the b axis in which they are connected via weak inter­molecular C-H...O contacts. Face-to-face π-π inter­actions also exist between the benzene rings of adjacent mol­ecules, with centroid-centroid and plane-to-plane shift distances of 3.8597 (14) and 1.843 (2) Å, respectively.

röntgendiffraktiocrystal structuredendrimeeri prekursorikiderakenneDihedral angle010402 general chemistryBioinformatics01 natural sciencesOrganic PapersCrystalchemistry.chemical_compoundGeneral Materials ScienceBenzeneta116Biphenyl010405 organic chemistryHydrogen bondGeneral ChemistryMeth-Condensed Matter PhysicsX-ray diffraction0104 chemical sciences3. Good healthCrystallographychemistrydendrimer precursorLayer (electronics)
researchProduct

Polyphenols and Pharmacological Screening of a Monarda fistulosa L. dry Extract Based on a Hydrodistilled Residue By-Product

2021

This study aimed to determine the composition and content of polyphenols in the dry extract obtained from the hydrodistilled residue by-product of the wild bergamot (Monarda fistulosa L., Lamiaceae Martinov family) herb (MFDE) and to evaluate its safety and pharmacological properties. The total phenolic content (TPC) in the MFDE was 120.64 mg GAE/g. The high-performance liquid chromatography (HPLC) analysis showed the presence of a plethora of phenolic compounds, including hydroxycinnamic acids and flavone derivatives in the MFDE, with rosmarinic acid and luteolin-7-O-glucoside being the main components. With an IC50 value of 0.285 mg/mL, it was found to be a strong DPPH radical scavenger. …

safetyDPPHRM1-950phenolic compoundsMonarda fistulosa01 natural sciencesHigh-performance liquid chromatographywild bergamot03 medical and health scienceschemistry.chemical_compound0302 clinical medicineantiradical activityPharmacology (medical)anti-inflammatory activityanalgesic activityOriginal ResearchPharmacologyResidue (complex analysis)biologyTraditional medicine010405 organic chemistryRosmarinic acidbiology.organism_classificationAcute toxicity0104 chemical scienceschemistryherbPolyphenol030220 oncology & carcinogenesispostdistillation wasteLamiaceaeTherapeutics. PharmacologyFrontiers in Pharmacology
researchProduct

Entrapment of a linear water pentamer into a uranyl-salophen dimer in the solid state

2019

In the solid state, uranyl-salophen complex 1, decorated with bipyridyl sidearms, self-assembles from moist acetonitrile into dimeric species displaying a confined water pentamer, as observed by X-...

self-assembly; single crystal X-ray diffraction; uranyl-salophen complexes; Water clusters010405 organic chemistryPentamerDimerSolid-stateGeneral Chemistryself-assembly010402 general chemistry01 natural sciences0104 chemical sciencesEntrapmentchemistry.chemical_compoundWater clusterschemistryUranyl salophenPolymer chemistrySelf-assemblyuranyl-salophen complexesConfined waterAcetonitrilesingle crystal X-ray diffraction
researchProduct

Synthesis and characterization of Zwitterionic Zn(II) and Cu(II) coordination compounds with ring-substituted 2,2′-biimidazole derivatives

2016

Zwitterionic coordination compounds with strongly asymmetrical charge distribution were synthesized and characterized. Ring-substituted biimidazoles were used as the primary ligands for Zn and Cu compounds. Formation of Zwitterionic coordination compound was found to be strongly dependent on the pH of the reaction medium as well as on the ring and nitrogen substituents of the ligand. Reaction of the Df-R2biim (Df-R2biim = 2,2′-bi-1R-imidazole-5,5′-dicarboxaldehyde, R = Me, Et or Pr) with ZnCl2 in neutral conditions led to binuclear compounds [Zn2Cl4(Df-R2biim)2] with two bridging ligands (1a–c). Reaction with CuCl2·2H2O gave neutral mononuclear compound [CuCl2(Df-Me2biim)] (1d) with chelati…

sinkki (metallit)DenticityStereochemistrykupariProtonation010402 general chemistry01 natural sciencesMedicinal chemistryAldehydeCoordination complexInorganic Chemistrycrystal structureschemistry.chemical_compoundbiimidazoleMaterials ChemistryImidazoleChelationPhysical and Theoretical Chemistryta116chemistry.chemical_classificationzwitterionic compunds010405 organic chemistryLigandzincAcetal0104 chemical scienceschemistrycoppernon-coordinated compoundsInorganica Chimica Acta
researchProduct

Carbon Monoxide Activation by a Molecular Aluminium Imide: C−O Bond Cleavage and C−C Bond Formation

2020

Anionic molecular imide complexes of aluminium are accessible via a rational synthetic approach involving the reactions of organo azides with a potassium aluminyl reagent. In the case of K 2 [( NON )Al(NDipp)] 2 ( NON = 4,5‐bis(2,6‐di iso propylanilido)‐2,7‐di‐tert‐butyl‐9,9‐dimethyl‐xanthene; Dipp = 2,6‐di iso propylphenyl) structural characterization by X‐ray crystallography reveals a short Al‐N distance, which is thought to be due primarily to the low coordinate nature of the nitrogen centre. The Al‐N unit is highly polar, and capable of the activation of relatively inert chemical bonds, such as those found in dihydrogen and carbon monoxide. In the case of CO, uptake of two molecules of …

small molecule activation010405 organic chemistryaluminiumkompleksiyhdisteetGeneral Medicine010402 general chemistry01 natural sciencescarbon monoxide3. Good health0104 chemical sciencesaktivointiimidealuminylalumiinihiilimonoksidiAngewandte Chemie
researchProduct

Trapping and Reactivity of a Molecular Aluminium Oxide Ion

2019

Aluminium oxides constitute an important class of inorganic compound that are widely exploited in the chemical industry as catalysts and catalyst supports. Due to the tendency for such systems to aggregate via Al‐O‐Al bridges, the synthesis of well‐defined, soluble, molecular models for these materials is challenging. Here we show that reactions of the potassium aluminyl complex K 2 [( NON )Al] 2 ( NON = 4,5‐bis(2,6‐diiso‐propylanilido)‐2,7‐di‐tert‐butyl‐9,9‐dimethylxanthene) with CO 2 , PhNCO and N 2 O all proceed via a common aluminium oxide intermediate. This highly reactive species can be trapped by coordination of a THF molecule as the anionic oxide complex [( NON )AlO(THF)] ‐ , which …

small molecule activationOxidereduction010402 general chemistry01 natural sciencesHeterolysisCatalysischemistry.chemical_compoundPolymer chemistryMoleculeReactivity (chemistry)alumiiniBond cleavageAluminium oxides010405 organic chemistryaluminiumpelkistysGeneral MedicineGeneral Chemistrykompleksiyhdisteet0104 chemical sciencesHyponitritechemistryoksiditAluminium oxidealuminyloxide
researchProduct

Low‐Valent Germanylidene Anions: Efficient Single‐Site Nucleophiles for Activation of Small Molecules

2021

Abstract Rare mononuclear and helical chain low‐valent germanylidene anions supported by cyclic (alkyl)(amino)carbene and hypermetallyl ligands were synthesised by stepwise reduction from corresponding germylene precursors via stable and isolable germanium radicals. The electronic structures of the anions can be described with ylidene and ylidone resonance forms with the Ge−C π‐electrons capable of binding even weak electrophiles. The germanylidene anions reacted with CO2 to give μ‐CO2‐κC:κO complexes, a rare coordination mode for low‐valent germanium and inaccessible for the related neutral germylones. These results implicate low‐valent germanylidene anions as efficient single‐site nucleop…

small molecule activationkemialliset yhdisteetdonor-acceptor systemsRadical010402 general chemistry01 natural sciencesMedicinal chemistryCatalysischemistry.chemical_compoundsub-valent compoundsNucleophilemain group elementsAlkylchemistry.chemical_classificationkemialliset reaktiot010405 organic chemistryChemistryCommunicationOrganic ChemistrymolekyylitGeneral ChemistryResonance (chemistry)Small moleculeCommunications0104 chemical sciences3. Good healthgermaniumaktivointiMain group elementElectrophileCarbenevalenssi (kemia)Chemistry – A European Journal
researchProduct

Synthesis and Biological Evaluation of a Multiantigenic Tn/TF-Containing Glycopeptide Mimic of the Tumor-Related MUC1 Glycoprotein

2006

solid-phase synthesisMolecular Sequence DataBreast Neoplasms010402 general chemistrymedicine.disease_cause01 natural sciencesBiochemistryantitumor agentsSolid-phase synthesisAntigenAntigens NeoplasmantigensCell Line TumorDrug DiscoverymedicineHumansAmino Acid SequenceGeneral Pharmacology Toxicology and PharmaceuticsPeptide sequenceMUC1Pharmacologychemistry.chemical_classification010405 organic chemistryMolecular MimicryMucin-1Organic ChemistryTransferringlycopeptidesoxime chemical ligationGlycopeptide0104 chemical sciencesMolecular mimicrychemistryBiochemistryTransferrinMolecular MedicineFemaleGlycoproteinChemMedChem
researchProduct