Search results for "44A12"

showing 10 items of 14 documents

Pestov identities and X-ray tomography on manifolds of low regularity

2021

We prove that the geodesic X-ray transform is injective on scalar functions and (solenoidally) on one-forms on simple Riemannian manifolds $(M,g)$ with $g \in C^{1,1}$. In addition to a proof, we produce a redefinition of simplicity that is compatible with rough geometry. This $C^{1,1}$-regularity is optimal on the H\"older scale. The bulk of the article is devoted to setting up a calculus of differential and curvature operators on the unit sphere bundle atop this non-smooth structure.

Mathematics - Differential Geometrynon-smooth geometrygeodesic X-ray tomographyinverse problems44A12 53C22 53C65 58J32Pestov identityinversio-ongelmatdifferentiaaligeometriaRiemannin monistotMathematics - Analysis of PDEsDifferential Geometry (math.DG)tomografiaintegraalilaskentaFOS: MathematicsMathematics::Differential Geometryintegral geometryAnalysis of PDEs (math.AP)
researchProduct

Torus computed tomography

2020

We present a new computed tomography (CT) method for inverting the Radon transform in 2D. The idea relies on the geometry of the flat torus, hence we call the new method Torus CT. We prove new inversion formulas for integrable functions, solve a minimization problem associated to Tikhonov regularization in Sobolev spaces and prove that the solution operator provides an admissible regularization strategy with a quantitative stability estimate. This regularization is a simple post-processing low-pass filter for the Fourier series of a phantom. We also study the adjoint and the normal operator of the X-ray transform on the flat torus. The X-ray transform is unitary on the flat torus. We have i…

Physics::Medical PhysicsComputed tomography01 natural sciencesFourier'n sarjatintegraalilaskentamedicineFOS: MathematicstietokonetomografiaMathematics - Numerical Analysis0101 mathematicsFlat torusFourier seriesRadon transformPhysicsmedicine.diagnostic_testRadon transformApplied MathematicsMathematical analysisTorusNumerical Analysis (math.NA)65R10 65R32 44A12 42B05 46F12Fourier seriesFunctional Analysis (math.FA)regularizationMathematics - Functional Analysis010101 applied mathematicssovellettu matematiikkaRegularization (physics)numeerinen analyysiX-ray tomography
researchProduct

Fourier analysis of periodic Radon transforms

2019

We study reconstruction of an unknown function from its $d$-plane Radon transform on the flat $n$-torus when $1 \leq d \leq n-1$. We prove new reconstruction formulas and stability results with respect to weighted Bessel potential norms. We solve the associated Tikhonov minimization problem on $H^s$ Sobolev spaces using the properties of the adjoint and normal operators. One of the inversion formulas implies that a compactly supported distribution on the plane with zero average is a weighted sum of its X-ray data.

Pure mathematicsGeneral MathematicsBessel potential01 natural sciencesTikhonov regularizationsymbols.namesakeFOS: Mathematics0101 mathematicsperiodic distributionsMathematicsRadon transformRadon transformApplied Mathematics44A12 42B05 46F12 45Q05010102 general mathematicsZero (complex analysis)Function (mathematics)Fourier analysisFunctional Analysis (math.FA)010101 applied mathematicsSobolev spaceregularizationMathematics - Functional AnalysisDistribution (mathematics)Fourier analysissymbolsAnalysis
researchProduct

Tensor tomography in periodic slabs

2017

The X-ray transform on the periodic slab $[0,1]\times\mathbb T^n$, $n\geq0$, has a non-trivial kernel due to the symmetry of the manifold and presence of trapped geodesics. For tensor fields gauge freedom increases the kernel further, and the X-ray transform is not solenoidally injective unless $n=0$. We characterize the kernel of the geodesic X-ray transform for $L^2$-regular $m$-tensors for any $m\geq0$. The characterization extends to more general manifolds, twisted slabs, including the M\"obius strip as the simplest example.

Mathematics - Differential GeometryMathematics - Functional Analysis44A12 53A45röntgenkuvausDifferential Geometry (math.DG)tomografiaFOS: Mathematicsröntgentutkimustensor tomographyslab geometryX-ray tomographyinversio-ongelmatFunctional Analysis (math.FA)
researchProduct

Geodesic ray transform with matrix weights for piecewise constant functions

2019

We show injectivity of the geodesic X-ray transform on piecewise constant functions when the transform is weighted by a continuous matrix weight. The manifold is assumed to be compact and nontrapping of any dimension, and in dimension three and higher we assume a foliation condition. We make no assumption regarding conjugate points or differentiability of the weight. This extends recent results for unweighted transforms.

Mathematics - Differential Geometry44A12 65R32 53A99GeodesicGeneral Mathematics010102 general mathematicsMathematical analysisConjugate pointsmatrix weight01 natural sciencesinversio-ongelmatManifoldFoliation010101 applied mathematicsMatrix (mathematics)geodesic ray transformDifferential Geometry (math.DG)Dimension (vector space)FOS: MathematicsPiecewiseConstant function0101 mathematicsintegral geometryMathematics
researchProduct

On Radon transforms on compact Lie groups

2016

We show that the Radon transform related to closed geodesics is injective on a Lie group if and only if the connected components are not homeomorphic to $S^1$ nor to $S^3$. This is true for both smooth functions and distributions. The key ingredients of the proof are finding totally geodesic tori and realizing the Radon transform as a family of symmetric operators indexed by nontrivial homomorphisms from $S^1$.

Mathematics - Differential GeometryPure mathematicsGeodesicGeneral MathematicsGroup Theory (math.GR)inversio-ongelmatsymbols.namesake46F12 44A12 22C05 22E30FOS: MathematicsRepresentation Theory (math.RT)MathematicsRadon transformLie groupsinverse problemsApplied Mathematicsta111Lie groupTorusInverse problemInjective functionFourier analysisDifferential Geometry (math.DG)Fourier analysissymbolsRay transformsHomomorphismMathematics - Group TheoryMathematics - Representation Theory
researchProduct

Tensor tomography on Cartan–Hadamard manifolds

2017

We study the geodesic X-ray transform on Cartan-Hadamard manifolds, and prove solenoidal injectivity of this transform acting on functions and tensor fields of any order. The functions are assumed to be exponentially decaying if the sectional curvature is bounded, and polynomially decaying if the sectional curvature decays at infinity. This work extends the results of Lehtonen (2016) to dimensions $n \geq 3$ and to the case of tensor fields of any order.

Mathematics - Differential GeometryPure mathematicsGeodesic01 natural sciencesTheoretical Computer ScienceTensor fieldHadamard transform44A12 53C21 53C22 45Q05Euclidean geometryFOS: MathematicsSectional curvatureTensor0101 mathematicsMathematical PhysicsMathematicsCartan-Hadamard manifoldsSolenoidal vector fieldApplied Mathematics010102 general mathematicsComputer Science Applications010101 applied mathematicsDifferential Geometry (math.DG)Bounded functionSignal Processingtensor tomographyMathematics::Differential GeometryInverse Problems
researchProduct

X-ray Tomography of One-forms with Partial Data

2021

If the integrals of a one-form over all lines meeting a small open set vanish and the form is closed in this set, then the one-form is exact in the whole Euclidean space. We obtain a unique continuation result for the normal operator of the X-ray transform of one-forms, and this leads to one of our two proofs of the partial data result. Our proofs apply to compactly supported covector-valued distributions.

Mathematics - Differential Geometry46F12 44A12 58A10Open set01 natural sciencesinversio-ongelmatintegraaliyhtälötSet (abstract data type)vector field tomographytomografiaFOS: MathematicsNormal operator0101 mathematicsMathematicsx-ray tomographyinverse problemsEuclidean spaceApplied MathematicsMathematical analysisInverse problemunique continuationnormal operatorFunctional Analysis (math.FA)Mathematics - Functional Analysis010101 applied mathematicsComputational MathematicsDifferential Geometry (math.DG)röntgenkuvausTomographyfunktionaalianalyysiAnalysisSIAM Journal on Mathematical Analysis
researchProduct

On Radon Transforms on Tori

2014

We show injectivity of the X-ray transform and the $d$-plane Radon transform for distributions on the $n$-torus, lowering the regularity assumption in the recent work by Abouelaz and Rouvi\`ere. We also show solenoidal injectivity of the X-ray transform on the $n$-torus for tensor fields of any order, allowing the tensors to have distribution valued coefficients. These imply new injectivity results for the periodic broken ray transform on cubes of any dimension.

Mathematics - Differential GeometryAstrophysics::High Energy Astrophysical PhenomenaGeneral Mathematicschemistry.chemical_elementRadoninversio-ongelmatTensor fieldray transformsMathematics - Analysis of PDEs46F12 44A12 53A45Dimension (vector space)FOS: MathematicsMathematicsgeometric opticsSolenoidal vector fieldRadon transformApplied MathematicsMathematical analysisOrder (ring theory)TorusFourier analysisDistribution (mathematics)Differential Geometry (math.DG)chemistryAnalysisAnalysis of PDEs (math.AP)
researchProduct

Unique continuation property and Poincar�� inequality for higher order fractional Laplacians with applications in inverse problems

2020

We prove a unique continuation property for the fractional Laplacian $(-\Delta)^s$ when $s \in (-n/2,\infty)\setminus \mathbb{Z}$. In addition, we study Poincar\'e-type inequalities for the operator $(-\Delta)^s$ when $s\geq 0$. We apply the results to show that one can uniquely recover, up to a gauge, electric and magnetic potentials from the Dirichlet-to-Neumann map associated to the higher order fractional magnetic Schr\"odinger equation. We also study the higher order fractional Schr\"odinger equation with singular electric potential. In both cases, we obtain a Runge approximation property for the equation. Furthermore, we prove a uniqueness result for a partial data problem of the $d$-…

Pure mathematicsControl and Optimizationfractional Schrödinger equationApproximation propertyPoincaré inequalityRadon transform.01 natural sciencesinversio-ongelmatSchrödinger equationsymbols.namesakefractional Poincaré inequalityOperator (computer programming)Mathematics - Analysis of PDEsFOS: MathematicsDiscrete Mathematics and CombinatoricsUniquenesskvanttimekaniikka0101 mathematicsepäyhtälötMathematicsosittaisdifferentiaaliyhtälötPlane (geometry)inverse problemsComputer Science::Information Retrieval010102 general mathematicsOrder (ring theory)Gauge (firearms)Mathematics::Spectral Theoryunique continuationFunctional Analysis (math.FA)010101 applied mathematicsMathematics - Functional AnalysisModeling and Simulationsymbolsfractional LaplacianAnalysis35R30 46F12 44A12Analysis of PDEs (math.AP)
researchProduct