Search results for "46G10"
showing 10 items of 16 documents
On $p$-Dunford integrable functions with values in Banach spaces
2018
[EN] Let (Omega, Sigma, mu) be a complete probability space, X a Banach space and 1 X. Special attention is paid to the compactness of the Dunford operator of f. We also study the p-Bochner integrability of the composition u o f: Omega->Y , where u is a p-summing operator from X to another Banach space Y . Finally, we also provide some tests of p-Dunford integrability by using w*-thick subsets of X¿.
Relations among Gauge and Pettis integrals for cwk(X)-valued multifunctions
2019
The aim of this paper is to study relationships among "gauge integrals" (Henstock, Mc Shane, Birkhoff) and Pettis integral of multifunctions whose values are weakly compact and convex subsets of a general Banach space, not necessarily separable. For this purpose we prove the existence of variationally Henstock integrable selections for variationally Henstock integrable multifunctions. Using this and other known results concerning the existence of selections integrable in the same sense as the corresponding multifunctions, we obtain three decomposition theorems. As applications of such decompositions, we deduce characterizations of Henstock and ${\mathcal H}$ integrable multifunctions, toget…
Multifunctions determined by integrable functions
2019
Integral properties of multifunctions determined by vector valued functions are presented. Such multifunctions quite often serve as examples and counterexamples. In particular it can be observed that the properties of being integrable in the sense of Bochner, McShane or Birkhoff can be transferred to the generated multifunction while Henstock integrability does not guarantee it.
Non absolutely convergent integrals of functions taking values in a locally convex space
2006
Properties of McShane and Kurzweil-Henstock integrable functions taking values in a locally convex space are considered and the relations with other integrals are studied. A convergence theorem for the Kurzweil-Henstock integral is given
Integration of multifunctions with closed convex values in arbitrary Banach spaces
2018
Integral properties of multifunctions with closed convex values are studied. In this more general framework not all the tools and the technique used for weakly compact convex valued multifunctions work. We pay particular attention to the "positive multifunctions". Among them an investigation of multifunctions determined by vector-valued functions is presented. Finally, decomposition results are obtained for scalarly and gauge-defined integrals of multifunctions and a full description of McShane integrability in terms of Henstock and Pettis integrability is given.
A Birkhoff type integral and the Bourgain property in a locally convex space
2007
An integral, called the $Bk$-integral, for functions taking values in a locally convex space is defined. Properties of $Bk$-integrable functions are considered and the relations with other integrals are studied. Moreover the $Bk$-integrability of bounded functions is compared with the Bourgain property.
Gauge integrals and selections of weakly compact valued multifunctions
2016
In the paper Henstock, McShane, Birkhoff and variationally multivalued integrals are studied for multifunctions taking values in the hyperspace of convex and weakly compact subsets of a general Banach space X. In particular the existence of selections integrable in the same sense of the corresponding multifunctions has been considered.
Convergence for varying measures in the topological case
2023
In this paper convergence theorems for sequences of scalar, vector and multivalued Pettis integrable functions on a topological measure space are proved for varying measures vaguely convergent.
Differentiation of an additive interval measure with values in a conjugate Banach space
2014
We present a complete characterization of finitely additive interval measures with values in conjugate Banach spaces which can be represented as Henstock-Kurzweil-Gelfand integrals. If the range space has the weak Radon-Nikodým property (WRNP), then we precisely describe when these integrals are in fact Henstock-Kurzweil-Pettis integrals.
Multi-integrals of finite variation
2020
The aim of this paper is to investigate different types of multi-integrals of finite variation and to obtain decomposition results.