Search results for "58F06"

showing 4 items of 4 documents

Quantization of Poisson Lie Groups and Applications

1996

LetG be a connected Poisson-Lie group. We discuss aspects of the question of Drinfel'd:can G be quantized? and give some answers. WhenG is semisimple (a case where the answer isyes), we introduce quantizable Poisson subalgebras ofC ∞(G), related to harmonic analysis onG; they are a generalization of F.R.T. models of quantum groups, and provide new examples of quantized Poisson algebras.

58B30Pure mathematicsGeneralizationPoisson distribution01 natural sciencesHarmonic analysissymbols.namesakeQuantization (physics)58F060103 physical sciences0101 mathematicsQuantumMathematical PhysicsComputingMilieux_MISCELLANEOUSMathematicsPoisson algebraDiscrete mathematics[MATH.MATH-RT]Mathematics [math]/Representation Theory [math.RT]Group (mathematics)010102 general mathematicsLie groupStatistical and Nonlinear Physics81S1017B37[ MATH.MATH-RT ] Mathematics [math]/Representation Theory [math.RT]symbols010307 mathematical physics16W30
researchProduct

Quantization on the Virasoro group

1990

The quantization of the Virasoro group is carried out by means of a previously established group approach to quantization. We explicitly work out the two-cocycles on the Virasoro group as a preliminary step. In our scheme the carrier space for all the Virasoro representations is made out of polarized functions on the group manifold. It is proved that this space does not contain null vector states, even forc≦1, although it is not irreducible. The full reduction is achieved in a striaghtforward way by just taking a well defined invariant subspace ℋ(c, h), the orbit of the enveloping algebra through the vacuum, which is irreducible for any value ofc andh. ℋ(c, h) is a proper subspace of the sp…

Pure mathematicsGroup (mathematics)Quantization (signal processing)Invariant subspaceStatistical and Nonlinear Physics81S10ManifoldGroup representation17B68Algebra58F06Null vector81R10Algebra representation22E65Mathematical PhysicsSymplectic geometryMathematics
researchProduct

Algebraic Quantization, Good Operators and Fractional Quantum Numbers

1995

The problems arising when quantizing systems with periodic boundary conditions are analysed, in an algebraic (group-) quantization scheme, and the ``failure" of the Ehrenfest theorem is clarified in terms of the already defined notion of {\it good} (and {\it bad}) operators. The analysis of ``constrained" Heisenberg-Weyl groups according to this quantization scheme reveals the possibility for new quantum (fractional) numbers extending those allowed for Chern classes in traditional Geometric Quantization. This study is illustrated with the examples of the free particle on the circumference and the charged particle in a homogeneous magnetic field on the torus, both examples featuring ``anomal…

PhysicsGeometric quantizationHigh Energy Physics - TheoryFree particleQuantization (signal processing)FOS: Physical sciencesStatistical and Nonlinear PhysicsMatemática Aplicada81S1081R99Ehrenfest theoremQuantum number58F06High Energy Physics - Theory (hep-th)Fractional quantum Hall effectCuantización algebraicaCuántica de números fraccionadosAlgebraic numberQuantumMathematical PhysicsMathematical physics
researchProduct

Algebraic quantization on a group and nonabelian constraints

1989

A generalization of a previous group manifold quantization formalism is proposed. In the new version the differential structure is circumvented, so that discrete transformations in the group are allowed, and a nonabelian group replaces the ordinary (central)U(1) subgroup of the Heisenberg-Weyl-like quantum group. As an example of the former we obtain the wave functions associated with the system of two identical particles, and the latter modification is used to account for the Virasoro constraints in string theory.

Quantum group58D30Differential structureStatistical and Nonlinear PhysicsString theoryAlgebra58F0622E7081D07Operator algebraUnitary group81E30Algebraic numberQuantum field theoryMathematical PhysicsIdentical particlesMathematicsCommunications in Mathematical Physics
researchProduct