Search results for "8c"

showing 10 items of 34 documents

CCDC 749971: Experimental Crystal Structure Determination

2010

Related Article: Y.Rousselin, N.Sok, F.Boschetti, R.Guilard, F.Denat|2010|Eur.J.Org.Chem.|2010|1688|doi:10.1002/ejoc.200901183

8b8c-Dimethyldecahydro-2a4a6a8a-tetraazacyclopenta[fg]acenaphthylene-1-carbonitrileSpace GroupCrystallographyCrystal SystemCrystal StructureCell ParametersExperimental 3D Coordinates
researchProduct

Existence of doubling measures via generalised nested cubes

2012

Working on doubling metric spaces, we construct generalised dyadic cubes adapting ultrametric structure. If the space is complete, then the existence of such cubes and the mass distribution principle lead into a simple proof for the existence of doubling measures. As an application, we show that for each $\epsilon>0$ there is a doubling measure having full measure on a set of packing dimension at most $\epsilon$.

Applied MathematicsGeneral MathematicsDyadic cubesStructure (category theory)Space (mathematics)Measure (mathematics)CombinatoricsMetric spacePacking dimension28C15 (Primary) 54E50 (Secondary)Mathematics - Classical Analysis and ODEsSimple (abstract algebra)Classical Analysis and ODEs (math.CA)FOS: MathematicsUltrametric spaceMathematicsProceedings of the American Mathematical Society
researchProduct

Are locally finite MV-algebras a variety?

2021

We answer Mundici's problem number 3 (D. Mundici. Advanced {\L}ukasiewicz calculus. Trends in Logic Vol. 35. Springer 2011, p. 235): Is the category of locally finite MV-algebras equivalent to an equational class? We prove: (i) The category of locally finite MV-algebras is not equivalent to any finitary variety. (ii) More is true: the category of locally finite MV-algebras is not equivalent to any finitely-sorted finitary quasi-variety. (iii) The category of locally finite MV-algebras is equivalent to an infinitary variety; with operations of at most countable arity. (iv) The category of locally finite MV-algebras is equivalent to a countably-sorted finitary variety. Our proofs rest upon th…

Class (set theory)Pure mathematicsAlgebra and Number Theory06D35 (Primary) 18C05 (Secondary)Duality (mathematics)Mathematics - Category TheoryMathematics - LogicArityMathematical proofComputer Science::Logic in Computer ScienceMathematics::Category TheoryFOS: MathematicsCountable setFinitaryCategory Theory (math.CT)Variety (universal algebra)Logic (math.LO)Categorical variableMathematics
researchProduct

The identity type weak factorisation system

2008

We show that the classifying category C(T) of a dependent type theory T with axioms for identity types admits a non-trivial weak factorisation system. We provide an explicit characterisation of the elements of both the left class and the right class of the weak factorisation system. This characterisation is applied to relate identity types and the homotopy theory of groupoids.

Class (set theory)Pure mathematicsGeneral Computer ScienceDependent type theoryHomotopiaType (model theory)Identity (music)Theoretical Computer Science510 - Consideracions fonamentals i generals de les matemàtiquesCombinatorics18C50Mathematics::Category TheoryFOS: MathematicsCategory Theory (math.CT)Univalent foundationsAxiomMathematicsHomotopy03B15; 18C50; 18B40Mathematics - Category TheoryIdentity type weak factorisation systemMathematics - LogicTipus Teoria dels03B15Type theory18B40Homotopy type theoryLogic (math.LO)Weak factorisation systemIdentity typeComputer Science(all)
researchProduct

Bounds for the relative n-th nilpotency degree in compact groups

2009

The line of investigation of the present paper goes back to a classical work of W. H. Gustafson of the 1973, in which it is described the probability that two randomly chosen group elements commute. In the same work, he gave some bounds for this kind of probability, providing information on the group structure. We have recently obtained some generalizations of his results for finite groups. Here we improve them in the context of the compact groups.

Degree (graph theory)Group (mathematics)General MathematicsProbability (math.PR)20P05 22A05 28C10 22A20 43A05Context (language use)Group Theory (math.GR)Group structureCombinatoricsLine (geometry)FOS: MathematicsMathematics - Group TheoryMathematics - ProbabilityHaar measureMathematics
researchProduct

Double adjunctions and free monads

2011

We characterize double adjunctions in terms of presheaves and universal squares, and then apply these characterizations to free monads and Eilenberg--Moore objects in double categories. We improve upon our earlier result in "Monads in Double Categories", JPAA 215:6, pages 1174-1197, 2011, to conclude: if a double category with cofolding admits the construction of free monads in its horizontal 2-category, then it also admits the construction of free monads as a double category. We also prove that a double category admits Eilenberg--Moore objects if and only if a certain parameterized presheaf is representable. Along the way, we develop parameterized presheaves on double categories and prove …

Double category adjunction monad18D05 (Primary) 18C15 18C20 (Secondary)Mathematics::Category TheoryFOS: MathematicsCategory Theory (math.CT)Mathematics - Category TheoryMathematics::Algebraic Topology
researchProduct

On operads, bimodules and analytic functors

2017

We develop further the theory of operads and analytic functors. In particular, we introduce a bicategory that has operads as 0-cells, operad bimodules as 1-cells and operad bimodule maps as 2-cells, and prove that this bicategory is cartesian closed. In order to obtain this result, we extend the theory of distributors and the formal theory of monads.

General Mathematics0102 computer and information sciences01 natural sciencesMathematics::Algebraic TopologyQuantitative Biology::Cell BehaviorMathematics::K-Theory and HomologyMathematics::Quantum AlgebraMathematics::Category Theory18D50 55P48 18D05 18C15FOS: MathematicsAlgebraic Topology (math.AT)Category Theory (math.CT)Mathematics - Algebraic Topology0101 mathematicsMathematicsFunctorOperad bimodule analytic functor bicategoryTheoryMathematics::Operator AlgebrasApplied Mathematics010102 general mathematicsOrder (ring theory)Mathematics - Category Theory16. Peace & justiceBicategoryAlgebraCartesian closed category010201 computation theory & mathematicsBimodule
researchProduct

Conformality and $Q$-harmonicity in sub-Riemannian manifolds

2016

We prove the equivalence of several natural notions of conformal maps between sub-Riemannian manifolds. Our main contribution is in the setting of those manifolds that support a suitable regularity theory for subelliptic $p$-Laplacian operators. For such manifolds we prove a Liouville-type theorem, i.e., 1-quasiconformal maps are smooth. In particular, we prove that contact manifolds support the suitable regularity. The main new technical tools are a sub-Riemannian version of p-harmonic coordinates and a technique of propagation of regularity from horizontal layers.

Harmonic coordinatesMathematics - Differential GeometryPure mathematicsWork (thermodynamics)morphism propertyGeneral Mathematicsconformal transformationBoundary (topology)Conformal map01 natural sciencesdifferentiaaligeometriaMathematics - Analysis of PDEsMathematics - Metric GeometryLiouville TheoremRegularity for p-harmonic functionSubelliptic PDE0103 physical sciencesFOS: MathematicsMathematics (all)0101 mathematicspopp measureMathematicsosittaisdifferentiaaliyhtälötsubelliptic PDESmoothnessQuasi-conformal mapApplied MathematicsHarmonic coordinates; Liouville Theorem; Quasi-conformal maps; Regularity for p-harmonic functions; Sub-Riemannian geometry; Subelliptic PDE; Mathematics (all); Applied Mathematicsta111Harmonic coordinate010102 general mathematics53C17 35H20 58C25Metric Geometry (math.MG)16. Peace & justiceregularity for p-harmonic functionsSub-Riemannian geometrysub-Riemannian geometryDifferential Geometry (math.DG)quasi-conformal mapsRegularity for p-harmonic functionsharmonic coordinates010307 mathematical physicsMathematics::Differential GeometrymonistotLiouville theoremAnalysis of PDEs (math.AP)
researchProduct

Equivalence of quasiregular mappings on subRiemannian manifolds via the Popp extension

2016

We show that all the common definitions of quasiregular mappings $f\colon M\to N$ between two equiregular subRiemannian manifolds of homogeneous dimension $Q\geq 2$ are quantitatively equivalent with precise dependences of the quasiregularity constants. As an immediate consequence, we obtain that if $f$ is $1$-quasiregular according to one of the definitions, then it is also $1$-quasiregular according to any other definition. In particular, this recovers a recent theorem of Capogna et al. on the equivalence of $1$-quasiconformal mappings. Our main results answer affirmatively a few open questions from the recent research. The main new ingredient in our proofs is the distortion estimates for…

Mathematics - Differential GeometryDifferential Geometry (math.DG)Mathematics::Complex VariablesMathematics - Complex VariablesFOS: MathematicsComplex Variables (math.CV)53C17 30C65 58C06 58C25
researchProduct

Supermanifolds, symplectic geometry and curvature

2015

We present a survey of some results and questions related to the notion of scalar curvature in the setting of symplectic supermanifolds.

Mathematics - Differential GeometryGeneral Relativity and Quantum CosmologyHigh Energy Physics::TheoryDifferential Geometry (math.DG)FOS: MathematicsFOS: Physical sciencesMathematics::Differential GeometryMathematical Physics (math-ph)58A50 58C50 53D35Mathematics::Symplectic GeometryMathematical Physics
researchProduct