Search results for "ADR"

showing 10 items of 6304 documents

Protein misfolding, amyotrophic lateral sclerosis and guanabenz: Protocol for a phase II RCT with futility design (ProMISe trial)

2017

IntroductionRecent studies suggest that endoplasmic reticulum stress may play a critical role in the pathogenesis of amyotrophic lateral sclerosis (ALS) through an altered regulation of the proteostasis, the cellular pathway-balancing protein synthesis and degradation. A key mechanism is thought to be the dephosphorylation of eIF2α, a factor involved in the initiation of protein translation. Guanabenz is an alpha-2-adrenergic receptor agonist safely used in past to treat mild hypertension and is now an orphan drug. A pharmacological action recently discovered is its ability to modulate the synthesis of proteins by the activation of translational factors preventing misfolded protein accumula…

0301 basic medicineOncologyPathologyamyotrophic lateral sclerosisamyotrophic lateral sclerosis; motor neurone disease; neuromuscular disease; randomized clinical trial guanabenz; unfolded protein response; adrenergic alpha-2 receptor agonist s; age of onset; amyotrophic lateral sclerosis; disease progression; double-blind method; endoplasmic reticulum stress; guanabenz; humans; italy; medical futility; neuroprotective agents; proteostasis deficienciesamyotrophic lateral sclerosis; motor neurone disease; neuromuscular disease; randomized clinical trial guanabenz; unfolded protein response; Medicine (all)randomized clinical trial guanabenzHelsinki declaration0302 clinical medicineProtocolAdrenergic alpha-2 Receptor Agonists1506Amyotrophic lateral sclerosisAge of OnsetGuanabenzMedicine (all)amyotrophic lateral sclerosis; motor neurone disease; neuromuscular disease; randomized clinical trial guanabenz; unfolded protein responseNeurodegenerationamyotrophic lateral sclerosis; motor neurone disease; neuromuscular disease; randomized clinical trial guanabenz; unfolded protein response;amyotrophic lateral sclerosis; guanabenz; motor neurone disease; neuromuscular disease; randomized clinical trial; unfolded protein response; Adrenergic alpha-2 Receptor Agonists; Age of Onset; Amyotrophic Lateral Sclerosis; Disease Progression; Double-Blind Method; Endoplasmic Reticulum Stress; Guanabenz; Humans; Italy; Medical Futility; Neuroprotective Agents; Proteostasis DeficienciesGeneral Medicineunfolded protein responseEndoplasmic Reticulum StressRiluzoleNeuroprotective AgentsNeurologyTolerabilityItalyDisease Progression1713GuanabenzMedical Futilitymedicine.drugmedicine.medical_specialtyamyotrophic lateral sclerosis; motor neurone disease; neuromuscular disease; randomized clinical trial guanabenz; unfolded protein response; Adrenergic alpha-2 Receptor Agonists; Age of Onset; Amyotrophic Lateral Sclerosis; Disease Progression; Double-Blind Method; Endoplasmic Reticulum Stress; Guanabenz; Humans; Italy; Medical Futility; Neuroprotective Agents; Proteostasis Deficiencies; Medicine (all)Neuroprotection03 medical and health sciencesmotor neurone diseaseDouble-Blind MethodInternal medicinemedicineHumansProteostasis Deficienciesbusiness.industryAmbientaleneuromuscular diseaserandomized clinical trialmedicine.diseaseClinical trial030104 developmental biologybusiness030217 neurology & neurosurgery
researchProduct

A Stat6/Pten Axis Links Regulatory T Cells with Adipose Tissue Function

2017

Obesity and type 2 diabetes are associated with metabolic defects and adipose tissue inflammation. Foxp3(+) regulatory T cells (Tregs) control tissue homeostasis by counteracting local inflammation. However, if and how T cells interlink environmental influences with adipocyte function remains unknown. Here, we report that enhancing sympathetic tone by cold exposure, beta3-adrenergic receptor (ADRB3) stimulation or a short-term high-calorie diet enhances Treg induction in vitro and in vivo. CD4(+) T cell proteomes revealed higher expression of Foxp3 regulatory networks in response to cold or ADRB3 stimulation in vivo reflecting Treg induction. Specifically, Ragulator-interacting protein C17o…

0301 basic medicinePTENProteomePhysiologyAdipose tissueStimulationmTORC1Diet induced thermogenesisBorcs6 ; C17orf59 ; Foxp3 ; Pten ; Stat6 ; T Cells ; Tregs ; Adipose Tissue Function ; Cold Exposure ; Metabolic Function ; Metabolism ; Regulatory T cellsT-Lymphocytes Regulatorychemistry.chemical_compound0302 clinical medicineAdipose Tissue BrownAdipocyteUncoupling Protein 1Tissue homeostasisSTAT6ddc:616Mice Inbred BALB CFOXP3Forkhead Transcription Factorshemic and immune systemsRegulatory T cellsCell biologyCold TemperatureFoxp3FemaleMetabolic functionmedicine.symptomSignal TransductionBorcs6Adipose Tissue WhiteCold exposureT cellsTregschemical and pharmacologic phenomenaInflammationBiologyArticle03 medical and health sciencesReceptors Adrenergic betaAdipose tissue functionmedicineAnimalsC17orf59Molecular BiologyPTEN PhosphohydrolaseCell BiologyMetabolism030104 developmental biologychemistryImmunologySTAT6 Transcription Factor030217 neurology & neurosurgeryCell Metabolism
researchProduct

Long-Term in vivo Evaluation of Orthotypical and Heterotypical Bioengineered Human Corneas.

2020

Purpose: Human cornea substitutes generated by tissue engineering currently require limbal stem cells for the generation of orthotypical epithelial cell cultures. We recently reported that bioengineered corneas can be fabricated in vitro from a heterotypical source obtained from Wharton’s jelly in the human umbilical cord (HWJSC). Methods: Here, we generated a partial thickness cornea model based on plastic compression nanostructured fibrin-agarose biomaterials with cornea epithelial cells on top, as an orthotypical model (HOC), or with HWJSC, as a heterotypical model (HHC), and determined their potential in vivo usefulness by implantation in an animal model. Results: No major side effects …

0301 basic medicinePathology02 engineering and technology:Chemicals and Drugs::Carbohydrates::Polysaccharides::Sepharose [Medical Subject Headings]Umbilical cord:Organisms::Eukaryota::Animals::Chordata::Vertebrates::Mammals::Primates::Haplorhini::Catarrhini::Hominidae::Humans [Medical Subject Headings]heterotypical human corneaTissue engineering:Organisms::Eukaryota::Animals::Chordata::Vertebrates::Mammals::Lagomorpha::Rabbits [Medical Subject Headings]Cornea:Analytical Diagnostic and Therapeutic Techniques and Equipment::Investigative Techniques::Optical Imaging::Tomography Optical::Tomography Optical Coherence [Medical Subject Headings]:Organisms::Eukaryota::Animals [Medical Subject Headings]:Technology and Food and Beverages::Technology Industry and Agriculture::Manufactured Materials::Biomedical and Dental Materials::Biocompatible Materials [Medical Subject Headings]Slit lamp021001 nanoscience & nanotechnologymedicine.anatomical_structure:Anatomy::Sense Organs::Eye::Anterior Eye Segment::Cornea [Medical Subject Headings]tissue engineeringStem cell0210 nano-technologyBiotechnology:Chemicals and Drugs::Amino Acids Peptides and Proteins::Proteins::Blood Proteins::Fibrin [Medical Subject Headings]medicine.medical_specialtyHistologyStromal celllcsh:BiotechnologyBiomedical EngineeringCélulas madre mesenquimatosasBioengineering:Anatomy::Embryonic Structures::Fetus::Umbilical Cord [Medical Subject Headings]:Analytical Diagnostic and Therapeutic Techniques and Equipment::Investigative Techniques::Models Animal [Medical Subject Headings]03 medical and health sciencesIn vivolcsh:TP248.13-248.65medicine:Anatomy::Cells::Connective Tissue Cells::Stromal Cells::Mesenchymal Stromal Cells [Medical Subject Headings]:Technology and Food and Beverages::Technology Industry and Agriculture::Engineering::Bioengineering::Cell Engineering::Tissue Engineering [Medical Subject Headings]Wharton’s jelly stem cellsbioengineered corneabusiness.industryTissue engineringeye diseasesEpitheliumCórnea:Anatomy::Cells::Epithelial Cells [Medical Subject Headings]:Anatomy::Tissues::Connective Tissue::Wharton Jelly [Medical Subject Headings]030104 developmental biologyIngeniería de tejidossense organsbusinessartificial cornea
researchProduct

Adrenal Gland and Gastric Malignant Melanoma without Evidence of Skin Lesion Treated with the Oncolytic Virus Rigvir

2020

Adrenal gland melanoma is an extremely rare diagnosis with less than 20 cases reported. The criteria for diagnosing adrenal gland melanoma include involvement of only one adrenal gland, presence of melanin pigment in the histological examination of the tumor tissue, no primary melanoma tumor in any other organ, and no history of resection of pigmented lesions. However, it is complicated to rule out melanoma of unknown primary origin. Here we report a female patient who at the age of 75 years was admitted to hospital due to suspicion of adrenal and gastric tumor. The largest tumor was found in the adrenal gland, thus leading to the diagnosis of primary adrenal gland melanoma presenting metas…

0301 basic medicinePathologymedicine.medical_specialtyCase ReportDiseaseMetastatic melanomalcsh:RC254-28203 medical and health sciences0302 clinical medicinemedicineOncolytic virotherapyAdrenal glandbusiness.industryMelanomaStomachStandard treatmentlcsh:Neoplasms. Tumors. Oncology. Including cancer and carcinogensmedicine.diseaseAdrenal gland melanomaOncolytic virus030104 developmental biologymedicine.anatomical_structureOncologyTolerability030220 oncology & carcinogenesisSkin lesionbusinessCase Reports in Oncology
researchProduct

Fishing for G-quadruplexes in solution with a perylene diimide derivative labeled with biotins

2018

A new fluorescent, non‐cytotoxic perylene diimide derivative with two biotins at the peri position, PDI2B, has been synthesized. This molecule is able to interact selectively with G‐quadruplexes with scarce or no affinity towards single‐ or double‐stranded DNA. These features have made it possible to design a simple, effective, safe, cheap, and selective method for fishing G‐quadruplex structures in solution by use of PDI2B and streptavidin coated magnetic beads. The new cyclic method reported leads to the recovery of more than 80 % of G‐quadruplex structures from solution, even in the presence of an excess of single‐stranded or duplex DNA as competitors. Moreover, PDI2B is a G4 ligand that…

0301 basic medicinePerilipin-1Surface PropertiesBiotinDNA Single-StrandedImidesLigandsCatalysisCatalysi03 medical and health sciencesheterocyclic compoundsPeryleneG-quadruplexeFluorescent DyesPerileneChemistryOrganic ChemistryQuímicaGeneral ChemistryDNAG-QuadruplexesSolutionsChemistry030104 developmental biologyBiophysicNucleic acidMagnetsChristian ministryStreptavidinHumanities
researchProduct

Adrenoceptors—New roles for old players

2019

LINKED ARTICLES This article is part of a themed section on Adrenoceptors-New Roles for Old Players. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v176.14/issuetoc.

0301 basic medicinePharmacology03 medical and health sciences030104 developmental biology0302 clinical medicineSection (typography)AnimalsHumansLibrary sciencePsychologyThemed Section: Editorial030217 neurology & neurosurgeryReceptors AdrenergicBritish Journal of Pharmacology
researchProduct

Agonist‐induced desensitisation of β 3 ‐adrenoceptors: Where, when, and how?

2019

β3 -Adrenoceptor agonists have proven useful in the treatment of overactive bladder syndrome, but it is not known whether their efficacy during chronic administration may be limited by receptor-induced desensitisation. Whereas the β2 -adrenoceptor has phosphorylation sites that are important for desensitisation, the β3 -adrenoceptor lacks these; therefore, it had been assumed that β3 -adrenoceptors are largely resistant to agonist-induced desensitisation. While all direct comparative studies demonstrate that β3 -adrenoceptors are less susceptible to desensitisation than β2 -adrenoceptors, desensitisation of β3 -adrenoceptors has been observed in many models and treatment settings. Chimeric …

0301 basic medicinePharmacologyAgonistMessenger RNAmedicine.medical_specialtyCell typePhosphorylation sitesAdrenergic receptormedicine.drug_classbusiness.industryChinese hamster ovary cellTransfection03 medical and health sciences030104 developmental biology0302 clinical medicineEndocrinologyInternal medicinemedicinebusinessReceptor030217 neurology & neurosurgeryBritish Journal of Pharmacology
researchProduct

The β3 -adrenoceptor agonist mirabegron increases human atrial force through β1 -adrenoceptors: an indirect mechanism?

2017

Background and Purpose Mirabegron has been classified as a β3-adrenoceptor agonist approved for overactive bladder syndrome. We investigated possible cardiac effects of mirabegron in the absence or presence of β-adrenoceptor subtype antagonists. In view of its phenylethanolamine structure, we investigated whether mirabegron has indirect sympathomimetic activity by using neuronal uptake blockers. Experimental Approach Right atrial trabeculae, from non-failing hearts, were paced and contractile force measured at 37°C. Single concentrations of mirabegron were added in the absence or presence of the phosphodiesterase inhibitor 3-isobutyl-1-methylxanthine (IBMX), β3 (L-748,337), β1 (CGP 20712A),…

0301 basic medicinePharmacologyAgonistmedicine.medical_specialtyIBMXContraction (grammar)PhenoxybenzamineChemistrymedicine.drug_classAdrenergicPharmacology03 medical and health scienceschemistry.chemical_compound030104 developmental biologyEndocrinologyInternal medicineDesipraminemedicinePhosphodiesterase inhibitorMirabegronmedicine.drugBritish Journal of Pharmacology
researchProduct

Cardiac β3‐adrenoceptors—A role in human pathophysiology?

2019

As β3 -adrenoceptors were first demonstrated to be expressed in adipose tissue they have received much attention for their metabolic effects in obesity and diabetes. After the existence of this subtype had been suggested to be present in the heart, studies focused on its role in cardiac function. While the presence and functional role of β3 -adrenoceptors in the heart has not uniformly been detected, there is a broad consensus that they become up-regulated in pathological conditions associated with increased sympathetic activity such as heart failure and diabetes. When detected, the β3 -adrenceptor has been demonstrated to mediate negative inotropic effects in an inhibitory G protein-depend…

0301 basic medicinePharmacologyCardiac function curveInotropemedicine.medical_specialtyAdrenergic receptorbusiness.industryAdipose tissuemedicine.diseasePathophysiology03 medical and health sciences030104 developmental biology0302 clinical medicineEndocrinologyInternal medicineDiabetes mellitusHeart failuremedicinebusinessReceptor030217 neurology & neurosurgeryBritish Journal of Pharmacology
researchProduct

α1-adrenoceptor activity of β-adrenoceptor ligands – An expected drug property with limited clinical relevance

2020

Many β-adrenoceptor agonists and antagonists including several clinically used drugs have been reported to also exhibit binding to α1-adrenoceptors. Such promiscuity within the adrenoceptor family appears to occur more often than off-target effects of drugs in general. It should not be considered surprising based on the amino acid homology among the nine adrenoceptor subtypes including the counter-ions for binding the endogenous catecholamines. When β-adrenoceptor ligands also bind to α1-adrenoceptors, they almost always act as antagonists, regardless of being agonists or antagonists at the β-adrenoceptor. The α1-adrenoceptor affinity of β-adrenoceptor ligands in most cases is at least one,…

0301 basic medicinePharmacologyDrugAdrenergic receptorChemistrymedia_common.quotation_subjectEndogenyPharmacologyα1 adrenoceptorIn vitroβ adrenoceptor03 medical and health sciences030104 developmental biology0302 clinical medicineClinical significanceReceptor030217 neurology & neurosurgerymedia_commonEuropean Journal of Pharmacology
researchProduct