Search results for "ADSORPTION"
showing 10 items of 1326 documents
A thermally/chemically robust and easily regenerable anilato-based ultramicroporous 3D MOF for CO 2 uptake and separation
2021
The combination of the properly designed novel organic linker, 3,6-N-ditriazoyil-2,5-dihydroxy-1,4-benzoquinone (trz2An), with CoII ions results in a 3D ultramicroporous MOF with high CO2 uptake capacity and separation efficiency, with particular attention to CO2/N2 and CO2/CH4 gas mixtures. This material consists of 1D chains of octahedrally coordinated CoII ions linked through the anilato ligands in the equatorial positions and to the triazole substituents from two neighbouring chains in the two axial positions. This leads to a 3D microporous structure with voids with an affinity for CO2 molecules and channels that enable the selective entrance of CO2 but not of molecules with larger kine…
Activated Carbon from Renewable Sources: Thermochemical Conversion and Activation of Biomass and Carbon Residues from Biomass Gasification
2017
Activated carbon is one of the most widely applied adsorbent. As a porous carbon, it is used for the purification of both gaseous and liquid emissions. Activated carbon is prepared from fossil resources, such as coal, or from biomass through (hydro)thermal processing followed by chemical and/or physical activation. Further, some biomass thermal treatment processes, such as biomass gasification, produce carbon residues that can be modified to activated carbon with physical or chemical activation methods. The desired properties of activated carbon, i.e. high specific surface area and porosity, high carbon content and excellent sorption capacity, can be modified and optimized during thermochem…
Innovative, ecofriendly biosorbent-biodegrading biofilms for bioremediation of oil- contaminated water.
2019
Immobilization of microorganisms capable of degrading specific contaminants significantly promotes bioremediation processes. In this study, innovative and ecofriendly biosorbent-biodegrading biofilms have been developed in order to remediate oil-contaminated water. This was achieved by immobilizing hydrocarbon-degrading gammaproteobacteria and actinobacteria on biodegradable oil-adsorbing carriers, based on polylactic acid and polycaprolactone electrospun membranes. High capacities for adhesion and proliferation of bacterial cells were observed by scanning electron microscopy. The bioremediation efficiency of the systems, tested on crude oil and quantified by gas chromatography, showed that…
From Norway Spruce Bark to Carbon Foams : Characterization, and Applications
2020
Fresh bark from spruce Picea abies was milled and extracted with hot water. The extracts were purified in a number of steps in order to get tannin-extracts pure enough to prepare tannin-based carbon foams. The chemical composition of the extracts were analyzed. The foams were maturated and thermally treated to obtain desired properties, such as specific surface area, porosity, and compressive strength. It was possible to produce carbon foams even if they contained carbohydrate impurities. Differences in the properties of the carbon foams such as compressive strength, specific surface areas, and pore size distributions might be related to the compositions of the extracts. The foams were fina…
Colorimetic biosensing dispositive based on reagentless hybrid biocomposite: Application to hydrogen peroxide determination
2016
Abstract An efficient approach to enhance the performance of colorimetric biosensors has been developed. The biosensor is based on the co-immobilization of the reagent 3,3′,5,5′-teramethylbencidine (TMB) and the enzyme horseradish peroxidase (HRP) in a PDMS-TEOS-SiO2NPs support. The HRP, in presence of H2O2, catalyzes the oxidation of TMB, producing a blue color. The generated biosensor, doped with the substrate (TMB) and the enzyme (HRP) (entrapped or adsorbed), has been used to determine H2O2 in real samples. Firstly, the immobilization of TMB and HRP in the composite has been studied in order to find the best suitable configuration. The kinetic parameters Vmax (maximum reaction rate) and…
Adsorption equilibria of water vapor on cork.
2010
International audience; We report here for the first time a complete thermodynamic study of water vapor adsorption on crude cork powder and plate. Adsorption−desorption isotherms were accurately measured by thermogravimetry at 283, 298, and 313 K in a large range of relative pressure. Adsorption enthalpies were determined by calorimetry as a function of loading. Adsorption−desorption isotherms exhibit a hysteresis due to the swelling of the material. The influence of the presence of lenticels on the adsorption properties of cork is found to be negligible. A detailed analysis and interpretation of adsorption data allow proposal of an adsorption mechanism in two steps. (i) First, water adsorb…
Functionalized halloysite nanotubes: Efficient carrier systems for antifungine drugs
2018
Abstract Halloysite-cyclodextrin hybrid was employed as carrier for sustained release of clotrimazole for vaginal or buccal treatment of Candidiasis. The nanocarrier was obtained by functionalization of halloysite surface with cyclodextrin moieties by means of microwave irradiation, with the final goal to obtain a scaffold for the covalent linkage of cysteamine hydrochloride. The interaction between clotrimazole and the pristine components, namely cyclodextrin and halloysite, was thoroughly investigated by several techniques such as DSC, TGA, UV–vis spectroscopy and some adsorption studies were, also, carried out. The release of the antifungine molecule was finally investigated in a medium …
Metakaolin geopolymer characterization and application for ammonium removal from model solutions and landfill leachate
2016
Abstract Geopolymers are aluminosilicate compounds that are amorphous analogues of zeolites, and thus possess similar cation-exchange properties. Geopolymers have been successfully applied to remove toxic metals and organic dyes from aqueous solutions. In this study, geopolymer was synthesized from metakaolin and applied to remove ammonium (NH 4 + ) from model solutions and landfill leachate. Geopolymerization increased the ammonium removal capacity, surface area and average pore width and changed the chemical structure of metakaolin. The maximum NH 4 + removal capacity of the geopolymer was 21.07 mg g − 1 which was 46% higher than the capacity of the reference clinoptilolite–heulandite zeo…
Kinetic, isotherm and thermodynamic studies of the adsorption of methylene blue dye onto agro-based cellulosic materials
2015
AbstractThe purpose of this work is to establish the optimal experimental conditions for the removal of methylene blue (MB-as model basic dye) from aqueous solution by adsorption onto four agro-based materials, namely, cedar sawdust, pine sawdust, wheat straw, and Provence cane Arundo donax. Results show that an increase in acidity or ionic strength of the medium has generally a negative effect on the discoloration yield. From the data of pH effect, there is no need to change the initial pH of the MB solution to be treated. Equilibrium was reached after 20−30 min of agitation when cedar sawdust, pine sawdust, and Provence cane are used as adsorbents. However, in the case of wheat straw, an …
Removal of Hexavalent Chromium from Aqueous Solutions Using Biopolymers
2018
AbstractTwo biopolymers were prepared by reaction of chestnut and quebracho tannins with gelatin extracted from untanned hide wastes. Obtained biopolymers were evaluated as adsorbents for removing ...