Search results for "AF"

showing 10 items of 23539 documents

Measurements of the energy distribution of electrons lost from the minimum B-field -- the effect of instabilities and two-frequency heating

2020

Further progress in the development of ECR ion sources (ECRIS) requires deeper understanding of the underlying physics. One of the topics that remains obscure, though being crucial for the performance of the ECRIS, is the electron energy distribution (EED). A well-developed technique of measuring the EED of electrons escaping axially from the magnetically confined plasma of an ECRIS was used for the study of EED in unstable mode of plasma confinement, i.e. in the presence of kinetic instabilities. The experimental data were recorded for pulsed and CW discharges with a room-temperature 14 GHz ECRIS at the JYFL accelerator laboratory. The measurements were focused on observing differences bet…

010302 applied physicsPhysicsResonanceFOS: Physical sciencesPlasmaElectronhiukkaskiihdyttimetplasmafysiikka7. Clean energy01 natural sciencesPhysics - Plasma PhysicsElectron cyclotron resonanceIon source010305 fluids & plasmasMagnetic fieldIonPlasma Physics (physics.plasm-ph)Magnetic trap0103 physical sciencesAtomic physicsInstrumentation
researchProduct

Lead evaporation instabilities and failure mechanisms of the micro oven at the GTS-LHC ECR ion source at CERN

2020

The GTS-LHC ECR ion source (named after the Grenoble Test Source and the Large Hadron Collider) at CERN provides heavy ion beams for the chain of accelerators from Linac3 up to the LHC for high energy collision experiments and to the Super Proton Synchrotron for fixed target experiments. During the standard operation, the oven technique is used to evaporate lead into the source plasma to produce multiple charged lead ion beams. Intensity and stability are key parameters for the beam, and the operational experience is that some of the source instabilities can be linked to the oven performance. Over long operation periods of several weeks, the evaporation is not stable which makes the tuning …

010302 applied physicsRange (particle radiation)Large Hadron ColliderMaterials scienceionitNuclear engineeringEvaporationPlasmahiukkaskiihdyttimetplasmafysiikka01 natural sciencesSuper Proton SynchrotronIon source010305 fluids & plasmasIonComputer Science::OtherPhysics::Popular Physics0103 physical scienceslyijyInstrumentationBeam (structure)
researchProduct

Determination of impurity distributions in ingots of solar grade silicon by neutron activation analysis

2017

AbstractIn a series of crystallization experiments, the directional solidification of silicon was investigated as a low cost path for the production of silicon wafers for solar cells. Instrumental neutron activation analysis was employed to measure the influence of different crystallization parameters on the distribution of 3d-metal impurities of the produced ingots. A theoretical model describing the involved diffusion and segregation processes during the solidification and cooling of the ingots could be verified by the experimental results. By successive etching of the samples after the irradiation, it could be shown that a layer of at least 60 μm of the samples has to be removed to get r…

010302 applied physicsSiliconMetallurgychemistry.chemical_elementdirectional solidification02 engineering and technologysolar silicon021001 nanoscience & nanotechnology01 natural sciencesMaterialien - Solarzellen und TechnologieKristallisation und Waferingtransition metalsSilicium-PhotovoltaikchemistryImpurityPhotovoltaik0103 physical sciencesPhysical and Theoretical ChemistryNeutron activation analysis0210 nano-technologyfeedstockneutron activation analysis
researchProduct

Stealth dicing with ultrafast Bessel beams with engineered transverse profiles

2017

International audience; We investigate high-speed glass cleaving with ultrafast laser beams with engineered transverse intensity profile. We achieve accuracy of ~ 1 µm at 25 mm/s and drastically enhance cleavability compared to standard Bessel beams.

010302 applied physics[PHYS.PHYS.PHYS-OPTICS]Physics [physics]/Physics [physics]/Optics [physics.optics]Materials scienceScanning electron microscopebusiness.industryLaser cutting02 engineering and technology021001 nanoscience & nanotechnology01 natural sciences7. Clean energyIntensity (physics)symbols.namesakeTransverse planeOptics0103 physical sciencessymbolsPhysics::Accelerator PhysicsWafer dicing0210 nano-technologybusinessUltrashort pulseBessel functionLaser beams
researchProduct

The biased disc of an electron cyclotron resonance ion source as a probe of instability-induced electron and ion losses

2019

International audience; Electron Cyclotron Resonance Ion Source (ECRIS) plasmas are prone to kinetic instabilities resulting in loss of electron and ion confinement. It is demonstrated that the biased disk of an ECRIS can be used as a probe to quantify such instability-induced electron and ion losses occurring in less than 10 µs. The qualitative interpretation of the data is supported by the measurement of the energy spread of the extracted ion beams implying a transient plasma potential >1.5 kV during the instability. A parametric study of the electron losses combined with electron tracking simulations allows for estimating the fraction of electrons expelled in each instability event to be…

010302 applied physics[PHYS]Physics [physics]Materials sciencesyklotronit[PHYS.PHYS.PHYS-ACC-PH]Physics [physics]/Physics [physics]/Accelerator Physics [physics.acc-ph]ElectronPlasmahiukkaskiihdyttimetKinetic energyplasmafysiikka01 natural sciencesInstabilityElectron cyclotron resonanceIon source010305 fluids & plasmasIonPhysics::Plasma Physics0103 physical sciencesTransient (oscillation)Atomic physicsInstrumentation
researchProduct

Multiphysical Modeling of Transport Phenomena During Laser Welding of Dissimilar Steels

2016

Abstract The success of new high-strength steels allows attaining equivalent performances with lower thicknesses and significant weight reduction. The welding of new couples of steel grades requires development and control of joining processes. Thanks to high precision and good flexibility, laser welding became one of the most used processes for joining of dissimilar welded blanks. The prediction of the local chemical composition in the weld formed between dissimilar steels in function of the welding parameters is essential because the dilution rate and the distribution of alloying elements in the melted zone determines the final tensile strength of the weld. The goal of the present study i…

010302 applied physicsturbulent flowHeat-affected zoneMaterials scienceLaser beam weldingdissimilar materials02 engineering and technologyMechanicsWeldingPhysics and Astronomy(all)021001 nanoscience & nanotechnology01 natural sciencesFick's laws of diffusiontransport of specieslaw.inventionlaminar flowlaw0103 physical sciencesHeat transferWeld poolLaser weldingDiffusion (business)0210 nano-technologyTransport phenomenaPhysics Procedia
researchProduct

Time-resolved photoisomerization of 1,1′-di-tert-butylstilbene and 1,1′-dicyanostilbene

2016

Abstract Photoisomerization of 1,1′-di-tert-butylstilbene ( 3 ) and 1,1′-dicyanostilbene ( 4 ) is monitored with stationary and broadband transient absorption spectroscopy. The electron affinity of the substituents correlates with the shift of the absorption band. The weak extinction of 3 complicates data interpretation, but comparison with earlier measured 1,1′-dimethylstilbene ( 1 ) and 1,1′-diethylstilbene ( 2 ) helps to assign transient spectra and relaxation paths. For 3 a long-lived perpendicular state P is observed with lifetime τ P  = 134 ps in acetonitrile. For 4 τ P  = 2.1 ps in acetonitrile and 27 ps in n-hexane, the difference indicating a substantial dipole moment (∼3D) of the …

010304 chemical physicsPhotoisomerizationChemistryRelaxation (NMR)Analytical chemistryGeneral Physics and Astronomy010402 general chemistry01 natural sciences0104 chemical sciencesDipolechemistry.chemical_compoundAbsorption bandElectron affinity0103 physical sciencesUltrafast laser spectroscopyPhysical and Theoretical ChemistrySpectroscopyAcetonitrileChemical Physics Letters
researchProduct

Sensitive Assays by Nucleophile-Induced Rearrangement of Photoactivated Diarylethenes.

2018

Upon light-induced isomerization, diarylethenes (DAEs) equipped with reactive aldehyde moieties rearrange selectively in the presence of amines, accompanied by decoloration. In a comprehensive study, the probe structure was optimized with regard to its inherent reactivity in the nucleophile-triggered rearrangement reaction. Detailed structure−reactivity relationships could be derived, in particular with regard to the type of integrated (het)aryl moieties as well as the location of the formyl residue, and the probes’ intrinsic reactivity with primary and secondary amines was optimized. Utilizing an ancillary base, the initially formed rearrangement product can engage in a subsequent catalyti…

010402 general chemistry01 natural sciencesBiochemistryAldehydeCatalysischemistry.chemical_compoundPhotochromismColloid and Surface ChemistryNucleophile541 Physikalische ChemieReactivity (chemistry)Rearrangement reactionsensingchemistry.chemical_classification010405 organic chemistryArylGeneral ChemistryphotochromismCombinatorial chemistry0104 chemical sciences540 Chemie und zugeordnete WissenschaftenaminechemistryCatalytic cycleddc:540diaryletheneddc:541547 Organische ChemieIsomerizationddc:547Journal of the American Chemical Society
researchProduct

Iminium Catalysis (n → π*)

2016

010402 general chemistry01 natural sciencesMedicinal chemistrycatalystsCatalysiskatalyytitepoxidationPi interactioncatalyst turnovertyppiyhdisteetDiels-Alder reactionFriedel–Crafts reactionta116cycloadditionDiels–Alder reactioncatalysis010405 organic chemistryChemistrychiral anionsIminiumnitrogen compoundsCycloaddition0104 chemical sciencesaxially chiral catalystskatalyysicocatalyst
researchProduct

9,10-Phenanthrenedione as Visible-Light Photoredox Catalyst: A Green Methodology for the Functionalization of 3,4-Dihydro-1,4-Benzoxazin-2- Ones thro…

2018

A visible-light photoredox functionalization of 3,4-dihydro-1,4-benzoxazin-2-ones through a Friedel-Crafts reaction with indoles using an inexpensive organophotoredox catalyst is described. The reaction uses a dual catalytic system that is formed by a photocatalyst simple and cheap, 9,10-phenanthrenedione, and a Lewis acid, Zn(OTf)2. 5W white LEDs are used as visible-light source and oxygen from air as a terminal oxidant, obtaining the corresponding products with good yields. The reaction can be extended to other electron-rich arenes. Our methodology represents one of the most valuable and sustainable approach for the functionalization of 3,4-dihydro-1,4-benzoxazin-2-ones, as compared to th…

010402 general chemistrylcsh:Chemical technology01 natural sciencesCatalysisCatalysislcsh:Chemistrychemistry.chemical_compoundCatàlisiTryptophollcsh:TP1-1185Lewis acids and basesorganic_chemistryPhysical and Theoretical ChemistryFriedel-Crafts reactionFriedel–Crafts reaction010405 organic chemistryindolesCombinatorial chemistry0104 chemical scienceschemistrylcsh:QD1-999visible-light photocatalysis14-benzoxazin-2-onesPhotocatalysisSurface modificationorganophotoredox catalysisQuímica orgànicaDerivative (chemistry)Visible spectrum
researchProduct