Search results for "AMINO ACID"

showing 10 items of 3965 documents

An STE12 gene identified in the mycorrhizal fungus Glomus intraradices restores infectivity of a hemibiotrophic plant pathogen

2009

International audience; * • Mechanisms of root penetration by arbuscular mycorrhizal (AM) fungi are unknown and investigations are hampered by the lack of transformation systems for these unculturable obligate biotrophs. Early steps of host infection by hemibiotrophic fungal phytopathogens, sharing common features with those of AM fungal colonization, depend on the transcription factor STE12. * • Using degenerated primers and rapid amplification of cDNA ends, we isolated the full-length cDNA of an STE12-like gene, GintSTE, from Glomus intraradices and profiled GintSTE expression by real-time and in situ RT-PCR. GintSTE activity and function were investigated by heterologous complementation …

0106 biological sciencesPhysiologyGLOMUS INTRARADICESGenes FungalMolecular Sequence DataMutantGerminationMYCORHIZES ARBUSCULAIRESSaccharomyces cerevisiaePlant SciencePlant Roots01 natural sciencesMicrobiologyFungal ProteinsGlomeromycota03 medical and health sciencesHOST PENETRATIONFungal StructuresGene Expression Regulation FungalMycorrhizaeSequence Homology Nucleic AcidMedicago truncatulaColletotrichumAmino Acid SequenceRNA MessengerTRANSCRIPTION FACTORMycorrhizaSTE12030304 developmental biologyPhaseolus0303 health sciencesFungal proteinbiologyMYCORRHIZAReverse Transcriptase Polymerase Chain ReactionColletotrichum lindemuthianumGene Expression Profilingfungifood and beveragesSpores Fungalbiology.organism_classificationMedicago truncatula[SDV.BV.PEP]Life Sciences [q-bio]/Vegetal Biology/Phytopathology and phytopharmacyColletotrichumMutationHEMIBIOTROPHIC PATHOGENSequence AlignmentGLOMEROMYCOTA010606 plant biology & botany
researchProduct

An isoleucine residue within the carboxyl-transferase domain of multidomain acetyl-coenzyme A carboxylase is a major determinant of sensitivity to ar…

2003

Abstract A 3,300-bp DNA fragment encoding the carboxyl-transferase domain of the multidomain, chloroplastic acetyl-coenzyme A carboxylase (ACCase) was sequenced in aryloxyphenoxypropionate (APP)-resistant and -sensitive Alopecurus myosuroides (Huds.). No resistant plant contained an Ile-1,781-Leu substitution, previously shown to confer resistance to APPs and cyclohexanediones (CHDs). Instead, an Ile-2,041-Asn substitution was found in resistant plants. Phylogenetic analysis of the sequences revealed that Asn-2,041 ACCase alleles derived from several distinct origins. Allele-specific polymerase chain reaction associated the presence of Asn-2,041 with seedling resistance to APPs but not to C…

0106 biological sciencesPhysiologyMolecular Sequence DataSequence alignmentPlant ScienceBiology01 natural sciences[SDV.GEN.GPL]Life Sciences [q-bio]/Genetics/Plants geneticschemistry.chemical_compoundMagnoliopsida[SDV.GEN.GPL] Life Sciences [q-bio]/Genetics/Plants geneticsmental disordersGeneticsTransferaseVULPINAmino Acid SequenceIsoleucinePeptide sequencePhylogenyComputingMilieux_MISCELLANEOUS2. Zero hungerchemistry.chemical_classificationPolymorphism GeneticCyclohexanonesHerbicidesAcetyl-CoA carboxylase04 agricultural and veterinary sciencesACETYL-COA CARBOXYLASEPyruvate carboxylaseProtein Structure TertiaryEnzymeBiochemistrychemistryMutation040103 agronomy & agriculture0401 agriculture forestry and fisheriesIsoleucinePropionatesSequence AlignmentDNA010606 plant biology & botanyResearch Article
researchProduct

Membrane glycerolipid remodeling triggered by nitrogen and phosphorus starvation in Phaeodactylum tricornutum.

2014

International audience; Diatoms constitute a major phylum of phytoplankton biodiversity in ocean water and freshwater ecosystems. They are known to respond to some chemical variations of the environment by the accumulation of triacylglycerol, but the relative changes occurring in membrane glycerolipids have not yet been studied. Our goal was first to define a reference for the glycerolipidome of the marine model diatom Phaeodactylum tricornutum, a necessary prerequisite to characterize and dissect the lipid metabolic routes that are orchestrated and regulated to build up each subcellular membrane compartment. By combining multiple analytical techniques, we determined the glycerolipid profil…

0106 biological sciencesPhysiologyPlant ScienceThylakoids01 natural sciencesPhaeodactylum tricornutumTranscriptomeMGDGNutrientnutrient starvationLipids metabolismSettore BIO/04 - Fisiologia VegetaleDigalactosyldiacylglycerolPhospholipids0303 health sciencesbiologyNitrogen starvationmicroalgaeMonogalactosyldiacyglycerolPhosphorusArticlesAdaptation PhysiologicalBiochemistryThylakoidSulfoquinovosyldiacylglycerollipids (amino acids peptides and proteins)DGDGNitrogenchemistry.chemical_elementlipidsMembrane Lipids03 medical and health sciencesSQDG[SDV.BBM] Life Sciences [q-bio]/Biochemistry Molecular BiologyGenetics[SDV.BBM]Life Sciences [q-bio]/Biochemistry Molecular Biology14. Life underwaterPhaeodactylum tricornutumTriglycerides030304 developmental biologyDiatomsMembranesGene Expression ProfilingPhosphorusfungiPhosphorus starvationGlycerolipidsLipid metabolismmetabolic pathwaybiology.organism_classificationMetabolic pathwayPhosphatidylcholineDiatomchemistryPhytoplanktonLipidomics010606 plant biology & botany
researchProduct

Molecular determinants of the Arabidopsis AKT1 K+ channel ionic selectivity investigated by expression in yeast of randomly mutated channels

1999

International audience; The Avabidopsis thaliana K+ channel AKT1 was expressed in a yeast strain defective for K+ uptake at low K+ concentrations (<3 mM). Besides restoring K+ transport in this strain, AKT1 expression increased its tolerance to salt (NaCl or LiCl), whatever the external K+ concentration used (50 mu M, 5 mM, or 50 mM), We took advantage of the latter phenomenon for screening a library of channels randomly mutated in the region that shares homologies with the pore forming domain (the so-called P domain) of animal K+ channels (Shaker family). Cassette mutagenesis was performed using a degenerate oligonucleotide that was designed to ensure, theoretically, a single mutation per …

0106 biological sciencesPhysiology[SDV]Life Sciences [q-bio]Saccharomyces cerevisiaeMutantPlant Science01 natural sciencesCell membrane03 medical and health sciencesComplementary DNAGeneticsmedicine[SDV.BV]Life Sciences [q-bio]/Vegetal BiologyIon transporterComputingMilieux_MISCELLANEOUS030304 developmental biologychemistry.chemical_classification0303 health sciencesbiologyCell BiologyGeneral Medicinebiology.organism_classificationCassette mutagenesisAmino acidmedicine.anatomical_structureBiochemistrychemistryBiophysicsMembrane channel010606 plant biology & botany
researchProduct

Elicitins trap and transfer sterols from micelles, liposomes and plant plasma membranes

1999

Using elicitins, proteins secreted by some phytopathogenic Oomycetes (Phytophthora) known to be able to transfer sterols between phospholipid vesicles, the transfer of sterols between micelles, liposomes and biological membranes was studied. Firstly, a simple fluorometric method to screen the sterol-carrier capacity of proteins, avoiding the preparation of sterolcontaining phospholipidic vesicles, is proposed. The transfer of sterols between DHE micelles (donor) and stigmasterol or cholesterol micelles (acceptor) was directly measured, as the increase in DHE fluorescence signal. The results obtained with this rapid and easy method lead to the same conclusions as those previously reported, u…

0106 biological sciencesPhytophthoraTime FactorsStigmasterolBiophysics01 natural sciencesMicelleBiochemistryFluorescenceFungal Proteins03 medical and health scienceschemistry.chemical_compoundErgosterolpolycyclic compoundsMicellesPlant Proteins030304 developmental biology0303 health sciencesLiposomeStigmasterolChemistryVesicleAlgal ProteinsCell MembraneProteinsElicitinBiological membraneLipid–protein interactionCell BiologyPlantsElicitinSterolsCholesterolMembraneBiochemistryDehydroergosterolLiposomeslipids (amino acids peptides and proteins)CryptogeinCarrier ProteinsFluorescence anisotropy010606 plant biology & botanyBiochimica et Biophysica Acta (BBA) - Biomembranes
researchProduct

Antagonistic effects of a Mhc class I allele on malaria-infected house sparrows.

2008

8 pages; International audience; Genes of the Major Histocompatibility Complex (Mhc) play a fundamental role during the immune response because MHC molecules expressed on cell surface allow the recognition and presentation of antigenic peptides to T-lymphocytes. Although Mhc alleles have been found to correlate with pathogen resistance in several host-parasite systems, several studies have also reported associations between Mhc alleles and an accrued infection risk or an accelerated disease progression. The existence of these susceptibility alleles is puzzling, as the cost generated by the infection should rapidly eliminate them from the population. Here, we show that susceptibility alleles…

0106 biological sciencesPlasmodiumMESH : Molecular Sequence DataMESH : DNAGenes MHC Class IMESH: Amino Acid Sequenceco-evolutionMESH: Base SequenceMESH : Microsatellite Repeats01 natural sciencessusceptibilityMESH: SparrowsPleiotropy[ SDV.EE.IEO ] Life Sciences [q-bio]/Ecology environment/SymbiosisMESH: AnimalsMESH : Malaria AvianGenetics0303 health scienceseducation.field_of_studybiologyMESH : Amino Acid Sequence[SDV.BID.EVO]Life Sciences [q-bio]/Biodiversity/Populations and Evolution [q-bio.PE]MESH: DNAMESH: Genetic Predisposition to DiseaseMESH: Genes MHC Class I3. Good healthMESH: Malaria Avian[ SDV.BID.EVO ] Life Sciences [q-bio]/Biodiversity/Populations and Evolution [q-bio.PE]MESH: Haemosporidaavian malariaSparrows[ SDV.MP.PAR ] Life Sciences [q-bio]/Microbiology and Parasitology/ParasitologyMalaria AvianMolecular Sequence DataPopulationMESH: Genetics PopulationMajor histocompatibility complex010603 evolutionary biologyMESH : Genes MHC Class Iresistance03 medical and health sciencesImmune systemAvian malariaMHC class ImedicinePasser domesticusAnimalsGenetic Predisposition to Disease[SDV.MP.PAR]Life Sciences [q-bio]/Microbiology and Parasitology/ParasitologyAmino Acid SequenceAlleleeducationAllelesEcology Evolution Behavior and Systematics030304 developmental biologyparasite competitionMESH: Molecular Sequence DataBase Sequencehouse sparrowMESH: PlasmodiumMESH: Alleles[ SDV.GEN.GA ] Life Sciences [q-bio]/Genetics/Animal geneticsDNAHaemosporidamedicine.diseaseMESH : Genetics PopulationHistocompatibility[SDV.GEN.GA]Life Sciences [q-bio]/Genetics/Animal geneticsGenetics PopulationMESH : PlasmodiumImmunologybiology.proteinMESH : Base SequenceMESH : Genetic Predisposition to DiseaseAntagonistic pleiotropyMESH : SparrowsMESH : AnimalsMESH : HaemosporidaMESH: Microsatellite RepeatsMESH : AllelesMicrosatellite Repeats[SDV.EE.IEO]Life Sciences [q-bio]/Ecology environment/Symbiosis
researchProduct

Reticulon-like proteins in Arabidopsis thaliana: structural organization and ER localization

2007

International audience; Reticulons are proteins that have been found predominantly associated with the endoplasmic reticulum in yeast and mammalian cells. While their functions are still poorly understood, recent findings suggest that they participate in the shaping of the tubular endoplamic reticulum (ER). Although reticulon-like proteins have been identified in plants, very little is known about their cellular localization and functions. Here, we characterized the reticulon-like protein family of Arabidopsis thaliana. Three subfamilies can be distinguished on the basis of structural organization and sequence homology. We investigated the subcellular localization of two members of the larg…

0106 biological sciencesProtein familyMolecular Sequence DataBiophysicsArabidopsis[SDV.BC]Life Sciences [q-bio]/Cellular BiologyRTLNB01 natural sciencesBiochemistryPlant Epidermis03 medical and health sciencesProtein structureStructural BiologyArabidopsisGeneticsArabidopsis thalianaAmino Acid SequenceMolecular BiologyCellular localizationConserved SequencePhylogeny030304 developmental biology0303 health sciencesbiologySequence Homology Amino AcidArabidopsis ProteinsEndoplasmic reticulumENDOPLASMIC RETICULUMCHLOROPLASTARABIDOPSIS THALIANACell BiologySubcellular localizationbiology.organism_classificationRETICULONBiochemistryReticulonRETICULON-LIKE PROTEIN BSequence Alignment010606 plant biology & botany
researchProduct

The skeletal proteome of the coral Acropora millepora: the evolution of calcification by co-option and domain shuffling.

2013

14 pages; International audience; In corals, biocalcification is a major function that may be drastically affected by ocean acidification (OA). Scleractinian corals grow by building up aragonitic exoskeletons that provide support and protection for soft tissues. Although this process has been extensively studied, the molecular basis of biocalcification is poorly understood. Notably lacking is a comprehensive catalog of the skeleton-occluded proteins-the skeletal organic matrix proteins (SOMPs) that are thought to regulate the mineral deposition. Using a combination of proteomics and transcriptomics, we report the first survey of such proteins in the staghorn coral Acropora millepora. The or…

0106 biological sciencesProteomeCoralMolecular Sequence Datacalcium carbonate skeletonProteomics010603 evolutionary biology01 natural sciencesMass SpectrometryCalcium CarbonateEvolution Molecular03 medical and health sciencesAcropora milleporaCalcification PhysiologicproteomicsPhylogeneticsAnthozoa[SDV.BBM.GTP]Life Sciences [q-bio]/Biochemistry Molecular Biology/Genomics [q-bio.GN]evolutionGeneticsAnimals14. Life underwaterAmino Acid Sequencescleractinian[SDV.IB.BIO]Life Sciences [q-bio]/Bioengineering/BiomaterialsMolecular BiologyEcology Evolution Behavior and SystematicsDiscoveriesPhylogeny030304 developmental biologyStaghorn coral0303 health sciencesbiologySequence Homology Amino AcidEcologyMolecular Sequence Annotationbiology.organism_classification[ SDV.IB.BIO ] Life Sciences [q-bio]/Bioengineering/BiomaterialsAnthozoabiomineralizationExtracellular MatrixProtein Structure TertiaryEvolutionary biology[ SDV.BBM.GTP ] Life Sciences [q-bio]/Biochemistry Molecular Biology/Genomics [q-bio.GN]ProteomeSequence AlignmentFunction (biology)
researchProduct

Arabidopsis SGS2 and SGS3 genes are required for posttranscriptional gene silencing and natural virus resistance.

2000

AbstractPosttranscriptional gene silencing (PTGS) in plants results from the degradation of mRNAs and shows phenomenological similarities with quelling in fungi and RNAi in animals. Here, we report the isolation of sgs2 and sgs3 Arabidopsis mutants impaired in PTGS. We establish a mechanistic link between PTGS, quelling, and RNAi since the Arabidopsis SGS2 protein is similar to an RNA-dependent RNA polymerase like N. crassa QDE-1, controlling quelling, and C. elegans EGO-1, controlling RNAi. In contrast, SGS3 shows no significant similarity with any known or putative protein, thus defining a specific step of PTGS in plants. Both sgs2 and sgs3 mutants show enhanced susceptibility to virus, d…

0106 biological sciencesRNA-induced transcriptional silencingDNA PlantRNA-induced silencing complexTrans-acting siRNAMolecular Sequence DataPotyvirusArabidopsisRNA-dependent RNA polymerase[SDV.BC]Life Sciences [q-bio]/Cellular BiologyGenes Plant01 natural sciencesCucumovirusGeneral Biochemistry Genetics and Molecular Biology03 medical and health sciencesSolanum lycopersicumRNA interferenceArabidopsisGene expressionGene silencingAmino Acid SequenceGene SilencingCloning MolecularRNA Processing Post-Transcriptional[SDV.BC] Life Sciences [q-bio]/Cellular BiologyComputingMilieux_MISCELLANEOUS030304 developmental biologyPlant DiseasesPlant ProteinsGenetics0303 health sciencesbiologyBase SequenceBiochemistry Genetics and Molecular Biology(all)Arabidopsis ProteinsfungiTobamovirusChromosome MappingGENETIQUEbiology.organism_classificationRNA-Dependent RNA PolymeraseMutagenesis010606 plant biology & botanyCell
researchProduct

Regulation of reactive oxygen species production by a 14-3-3 protein in elicited tobacco cells.

2007

International audience; The regulation of the system responsible for the production of reactive oxygen species (ROS) during plant–microorganism interaction is still largely unknown. The protein NtrbohD has been recently demonstrated as the plasma membrane oxidase responsible for ROS production in elicited tobacco cells. Here, its C-terminus part was used as a bait in a two-hybrid screen in order to identify putative regulators of this system. This led to the isolation of a cDNA coding for a member of the 14-3-3 protein family. The corresponding transcript was induced after infiltration of tobacco leaves with the fungal elicitor cryptogein. Tobacco cells transformed with an antisense constru…

0106 biological sciencesSIGNALLINGDNA ComplementaryProtein familyPhysiologyMolecular Sequence DataContext (language use)Plant ScienceBiology01 natural sciences03 medical and health sciencesTwo-Hybrid System TechniquesTobaccoNADPH OXIDASEAmino Acid Sequence14-3-3 protein030304 developmental biologychemistry.chemical_classification[SDV.EE]Life Sciences [q-bio]/Ecology environment0303 health sciencesReactive oxygen speciesOxidase testCRYPTOGEINNADPH oxidaseSequence Homology Amino AcidElicitorchemistryBiochemistry14-3-3 ProteinsNAD(P)H oxidasebiology.proteinReactive Oxygen Species010606 plant biology & botanyPlant, cellenvironment
researchProduct