Search results for "ANTIFUNGAL"
showing 10 items of 348 documents
Artemisia herba-alba essential oil from Buseirah (South Jordan): Chemical characterization and assessment of safe antifungal and anti-inflammatory do…
2015
Abstract Ethnopharmacologic relevance Artemisia herba-alba Asso (“desert wormwood” in English; “armoise blanche” in French; “shaih” in Arabic), is a medicinal and strongly aromatic plant widely used in traditional medicine by many cultures since ancient times. It is used to treat inflammatory disorders (colds, coughing, bronchitis, diarrhea), infectious diseases (skin diseases, scabies, syphilis) and others (diabetes, neuralgias). In Jordanian traditional medicine, this plant is used as antiseptic and against skin diseases, scabies, syphilis, fever as well as menstrual and nervous disorders. Aim of the study Considering the traditional medicinal uses and the lack of scientific studies addre…
Characterization of the antimicrobial susceptibility of fungi responsible for onychomycosis in Spain
2010
Due to the increase of choices relative to antifungals, there is a need to improve the standardization of in vitro methods used to determine the antifungal susceptibility of fungal pathogens. Our study evaluated the in vitro susceptibility of filamentous fungi isolated from patients with toenail onychomycosis against itraconazole, ciclopirox, eberconazole, fluconazole and terbinafine. The minimum inhibitory concentration (MIC) of these antifungal agents was determined with 100 isolates, including dermatophytes (70 strains) and non-dermatophyte molds (30 strains). The susceptibility of fungal isolates was measured by using a technique modified for dermatophytes (0.5 × 10(3)-0.5 × 10(4) conid…
Peptides of the Constant Region of Antibodies Display Fungicidal Activity
2012
Synthetic peptides with sequences identical to fragments of the constant region of different classes (IgG, IgM, IgA) of antibodies (Fc-peptides) exerted a fungicidal activity in vitro against pathogenic yeasts, such as Candida albicans, Candida glabrata, Cryptococcus neoformans, and Malassezia furfur, including caspofungin and triazole resistant strains. Alanine-substituted derivatives of fungicidal Fc-peptides, tested to evaluate the critical role of each residue, displayed unaltered, increased or decreased candidacidal activity in vitro. An Fc-peptide, included in all human IgGs, displayed a therapeutic effect against experimental mucosal and systemic candidiasis in mouse models. It is in…
Alternative Biosynthetic Starter Units Enhance the Structural Diversity of Cyanobacterial Lipopeptides
2019
Puwainaphycins (PUWs) and minutissamides (MINs) are structurally analogous cyclic lipopeptides possessing cytotoxic activity. Both types of compound exhibit high structural variability, particularly in the fatty acid (FA) moiety. Although a biosynthetic gene cluster responsible for synthesis of several PUW variants has been proposed in a cyanobacterial strain, the genetic background for MINs remains unexplored. Herein, we report PUW/MIN biosynthetic gene clusters and structural variants from six cyanobacterial strains. Comparison of biosynthetic gene clusters indicates a common origin of the PUW/MIN hybrid nonribosomal peptide synthetase and polyketide synthase. Surprisingly, the biosynthet…
Intramembrane particles and filipin labelling on the membranes of autophagic vacuoles and lysosomes in mouse liver
1989
Morphologically detectable protein (intramembrane particles) and cholesterol (filipin labelling) in the membranes of autophagic vacuoles and lysosomes were studied in mouse hepatocytes using thin-section and freeze-fracture electron microscopy. Both isolated autophagic vacuoles and lysosomes, and intact tissue blocks were used due to the facts (i) that lysosomes are difficult to recognize in freeze-fracture replicas of intact hepatocytes, and (i) that filipin penetration into the tissue blocks is unsatisfactory. Intramembrane particle density was low in the membranes of early autophagic vacuoles (defined as round-shaped vacuoles in which an inner membrane parallel with the outer limiting me…
Disruption of the Candida albicans ATC1 gene encoding a cell-linked acid trehalase decreases hypha formation and infectivity without affecting resist…
2007
In Candida albicans, the ATC1 gene, encoding a cell wall-associated acid trehalase, has been considered as a potentially interesting target in the search for new antifungal compounds. A phenotypic characterization of the double disruptant atc1Delta/atc1Delta mutant showed that it was unable to grow on exogenous trehalose as sole carbon source. Unlike actively growing cells from the parental strain (CAI4), the atc1Delta null mutant displayed higher resistance to environmental insults, such as heat shock (42 degrees C) or saline exposure (0.5 M NaCl), and to both mild and severe oxidative stress (5 and 50 mM H(2)O(2)), which are relevant during in vivo infections. Parallel measurements of int…
Glycoprotein molecules in the walls of Schizosaccharomyces pombe wild-type cells and a morphologically altered mutant resistant to papulacandin B
1990
SUMMARY: Schizosaccharomyces pombe cell walls contain two major glycoprotein species, I and II, with molecular masses of 2 x 106 and 5 x 105 Da respectively, as determined by gel filtration chromatography and PAGE. The ratio of sugar to protein is higher in species I than in species II. Much of the sugar in both glycoproteins (about 85% in wild-type cells) is O-linked to the peptide moiety. The morphological sph1 mutant is resistant to papulacandin B, and its cell wall contains less glycoprotein II (but not less glycoprotein I) than the parental wild-type strain, although glycoprotein II is still synthesized and released into the growth medium. Papulacandin B largely reverses the morphologi…
Bioactive aristolactams from Piper umbellatum.
2007
Four alkaloids named piperumbellactams A-D (1-4) were isolated from branches of Piper umbellatum together with known N-hydroxyaristolam II (5), N-p-coumaroyl tyramine (6), 4-nerolidylcatechol (7), N-trans-feruloyltyramine, E-3-(3,4-dihydroxyphenyl)-N-2-[4-hydroxyphenylethyl]-2-propenamide, beta-amyrin, friedelin, apigenin 8-C-neohesperidoside, acacetin 6-C-beta-d-glucopyranoside, beta-sitosterol, its 3-O-beta-d-glucopyranoside and its 3-O-beta-d-[6'-dodecanoyl]-glucopyranoside. Glycosidase inhibition, antioxidant and antifungal activities of these compounds were evaluated. Compounds 1-3 showed moderate alpha-glucosidase enzyme inhibition with IC50 values 98.07+/-0.44, 43.80+/-0.56 and 29.64…
Isolation and characterization of Saccharomyces cerevisiae mutants resistant to aculeacin A
1991
Aculeacin A is a lipopeptide that inhibits beta-glucan synthesis in yeasts. A number of Saccharomyces cerevisiae mutants resistant to this antibiotic were isolated, and four loci (ACR1, ACR2, ACR3, and ACR4) whose products are involved in the sensitivity to aculeacin A of yeast cells were defined. Mutants containing mutations in the four loci were also resistant to echinocandin B, another member of this lipopeptide family of antibiotics. In contrast, acr1, acr3, and acr4 mutants were resistant to papulacandin B (an antibiotic containing a disaccharide linked to two fatty acid chains that also inhibits beta-glucan synthesis), but acr2 mutants were susceptible to this antibiotic. This result …
A New Phenanthrene Glycoside and Other Constituents from Dioscorea opposita
2005
Phytochemical investigation of the rhizome of Dioscorea opposita has led to the isolation of a new phenanthrene glycoside, 3,4,6-trihydroxyphenanthrene-3-O-beta-D-glucopyranoside (1), and five known compounds, soyacerebroside I (2), adenosine (3), beta-sitosterol (4), palmitic acid (5) and palmitoyloleoylphosphatidylcholine (6). Their structures were determined by spectroscopic methods, including 1D- and 2D-NMR. Compounds 1-6 exhibited no antifungal activity against the human pathogenic yeasts Candida albicans, C. glabrata and C. tropicalis.