Search results for "AREA"
showing 10 items of 3002 documents
Projecting Exposure to Extreme Climate Impact Events Across Six Event Categories and Three Spatial Scales
2020
Summarization: The extent and impact of climate‐related extreme events depend on the underlying meteorological, hydrological, or climatological drivers as well as on human factors such as land use or population density. Here we quantify the pure effect of historical and future climate change on the exposure of land and population to extreme climate impact events using an unprecedentedly large ensemble of harmonized climate impact simulations from the Inter‐Sectoral Impact Model Intercomparison Project phase 2b. Our results indicate that global warming has already more than doubled both the global land area and the global population annually exposed to all six categories of extreme events co…
ERA5-Land: A state-of-the-art global reanalysis dataset for land applications
2021
Framed within the Copernicus Climate Change Service (C3S) of the European Commission, the European Centre for Medium-Range Weather Forecasts (ECMWF) is producing an enhanced global dataset for the land component of the fifth generation of European ReAnalysis (ERA5), hereafter referred to as ERA5-Land. Once completed, the period covered will span from 1950 to the present, with continuous updates to support land monitoring applications. ERA5-Land describes the evolution of the water and energy cycles over land in a consistent manner over the production period, which, among others, could be used to analyse trends and anomalies. This is achieved through global high-resolution numerical integrat…
Quantifying vegetation biophysical variables from the Sentinel-3/FLEX tandem mission: Evaluation of the synergy of OLCI and FLORIS data sources
2020
The ESA’s forthcoming FLuorescence EXplorer (FLEX) mission is dedicated to the global monitoring of the vegetation’s chlorophyll fluorescence by means of an imaging spectrometer, FLORIS. In order to properly interpret the fluorescence signal in relation to photosynthetic activity, essential vegetation variables need to be retrieved concomitantly. FLEX will fly in tandem with Sentinel-3 (S3), which conveys the Ocean and Land Colour Instrument (OLCI) that is designed to characterize the atmosphere and the terrestrial vegetation at a spatial resolution of 300 m. In this work we present the retrieval models of four essential biophysical variables: (1) Leaf Area Index (LAI), (2) leaf chlorophyll…
Multi-Crop Green LAI Estimation with a New Simple Sentinel-2 LAI Index (SeLI)
2019
The spatial quantification of green leaf area index (LAIgreen), the total green photosynthetically active leaf area per ground area, is a crucial biophysical variable for agroecosystem monitoring. The Sentinel-2 mission is with (1) a temporal resolution lower than a week, (2) a spatial resolution of up to 10 m, and (3) narrow bands in the red and red-edge region, a highly promising mission for agricultural monitoring. The aim of this work is to define an easy implementable LAIgreen index for the Sentinel-2 mission. Two large and independent multi-crop datasets of in situ collected LAIgreen measurements were used. Commonly used LAIgreen indices applied on the Sentinel-2 10 m ×
Gaussian Processes Retrieval of LAI from Sentinel-2 Top-of-Atmosphere Radiance Data
2020
Abstract Retrieval of vegetation properties from satellite and airborne optical data usually takes place after atmospheric correction, yet it is also possible to develop retrieval algorithms directly from top-of-atmosphere (TOA) radiance data. One of the key vegetation variables that can be retrieved from at-sensor TOA radiance data is leaf area index (LAI) if algorithms account for variability in atmosphere. We demonstrate the feasibility of LAI retrieval from Sentinel-2 (S2) TOA radiance data (L1C product) in a hybrid machine learning framework. To achieve this, the coupled leaf-canopy-atmosphere radiative transfer models PROSAIL-6SV were used to simulate a look-up table (LUT) of TOA radi…
Top-of-Atmosphere Retrieval of Multiple Crop Traits Using Variational Heteroscedastic Gaussian Processes within a Hybrid Workflow.
2021
In support of cropland monitoring, operational Copernicus Sentinel-2 (S2) data became available globally and can be explored for the retrieval of important crop traits. Based on a hybrid workflow, retrieval models for six essential biochemical and biophysical crop traits were developed for both S2 bottom-of-atmosphere (BOA) L2A and S2 top-of-atmosphere (TOA) L1C data. A variational heteroscedastic Gaussian process regression (VHGPR) algorithm was trained with simulations generated by the combined leaf-canopy reflectance model PROSAILat the BOA scale and further combined with the Second Simulation of a Satellite Signal in the Solar Spectrum (6SV) atmosphere model at the TOA scale. Establishe…
Exploitation of SAR and Optical Sentinel Data to Detect Rice Crop and Estimate Seasonal Dynamics of Leaf Area Index
2017
This paper presents and evaluates multitemporal LAI estimates derived from Sentinel-2A data on rice cultivated area identified using time series of Sentinel-1A images over the main European rice districts for the 2016 crop season. This study combines the information conveyed by Sentinel-1A and Sentinel-2A into a high-resolution LAI retrieval chain. Rice crop was detected using an operational multi-temporal rule-based algorithm, and LAI estimates were obtained by inverting the PROSAIL radiative transfer model with Gaussian process regression. Direct validation was performed with in situ LAI measurements acquired in coordinated field campaigns in three countries (Italy, Spain and Greece). Res…
A multisensor fusion approach to improve LAI time series
2011
International audience; High-quality and gap-free satellite time series are required for reliable terrestrial monitoring. Moderate resolution sensors provide continuous observations at global scale for monitoring spatial and temporal variations of land surface characteristics. However, the full potential of remote sensing systems is often hampered by poor quality or missing data caused by clouds, aerosols, snow cover, algorithms and instrumentation problems. A multisensor fusion approach is here proposed to improve the spatio-temporal continuity, consistency and accuracy of current satellite products. It is based on the use of neural networks, gap filling and temporal smoothing techniques. …
Hydrochemical mercury distribution and air-sea exchange over the submarine hydrothermal vents off-shore Panarea Island (Aeolian arc, Tyrrhenian Sea)
2017
Abstract There is a growing concern about the mercury (Hg) vented from submarine hydrothermal fluids to the marine surrounding and exchange of dissolved gaseous mercury (DGM) between the sea surface and the atmosphere. A geochemical survey of thermal waters collected from submarine vents at Panarea Island (Aeolian Islands, southern Italy) was carried out in 2015 (15–17th June and 17–18th November), in order to investigate the concentration of Hg species in hydrothermal fluids and the vertical distribution in the overlying water column close to the submarine exhalative area. Specific sampling methods were employed by Scuba divers at five submarine vents located along the main regional tecton…
2018
The Radar Vegetation Index (RVI) is a well-established microwave metric of vegetation cover. The index utilizes measured linear scattering intensities from co- and cross-polarization and is normalized to ideally range from 0 to 1, increasing with vegetation cover. At long wavelengths (L-band) microwave scattering does not only contain information coming from vegetation scattering, but also from soil scattering (moisture & roughness) and therefore the standard formulation of RVI needs to be revised. Using global level SMAP L-band radar data, we illustrate that RVI runs up to 1.2, due to the pre-factor in the standard formulation not being adjusted to the scattering mechanisms at these lo…