Search results for "ATP synthase"
showing 10 items of 61 documents
3D-Structure and function of strictosidine synthase--the key enzyme of monoterpenoid indole alkaloid biosynthesis.
2008
Strictosidine synthase (STR; EC 4.3.3.2) plays a key role in the biosynthesis of monoterpenoid indole alkaloids by catalyzing the Pictet-Spengler reaction between tryptamine and secologanin, leading exclusively to 3alpha-(S)-strictosidine. The structure of the native enzyme from the Indian medicinal plant Rauvolfia serpentina represents the first example of a six-bladed four-stranded beta-propeller fold from the plant kingdom. Moreover, the architecture of the enzyme-substrate and enzyme-product complexes reveals deep insight into the active centre and mechanism of the synthase highlighting the importance of Glu309 as the catalytic residue. The present review describes the 3D-structure and …
3'-Untranslated regions of oxidative phosphorylation mRNAs function in vivo, as enhancers of translation
2000
Recent findings have indicated that the 3´-untranslated region (3´-UTR) of the mRNA encoding the β-catalytic subunit of the mitochondrial H+-ATP synthase has an in vitro translation-enhancing activity (TEA) [Izquierdo and Cuezva, Mol. Cell. Biol. (1997) 17, 5255–5268; Izquierdo and Cuezva, Biochem. J. (2000) 346, 849–855]. In the present work, we have expressed chimaeric plasmids that encode mRNA variants of green fluorescent protein in normal rat kidney and liver clone 9 cells to determine whether the 3´-UTRs of nuclear-encoded mRNAs involved in the biogenesis of mitochondria have an intrinsic TEA. TEA is found in the 3´-UTR of the mRNAs encoding the α- and β-subunits of the rat H+-ATP syn…
Cyclopropane Fatty Acid Synthase from Oenococcus oeni: Expression in Lactococcus lactis subsp. Cremoris and Biochemical Characterization
2015
Bacterial cyclopropane fatty acid synthases (CFA synthases) catalyze the transfer of a methyl group from S-adenosyl-L-methionine (AdoMet) to the double bond of a lipid chain, thereby forming a cyclopropane ring. CFAs contribute to resistance to acidity, dryness, and osmotic imbalance in many bacteria. This work describes the first biochemical characterization of a lactic acid bacterium CFA synthase. We have overexpressed Oenococcus oeni CFA synthase in E. coli in order to purify the enzyme. The optimum cyclopropanation activity was obtained at pH 5.6 and 35.8 °C. The high K(m) (AdoMet) value obtained (2.26 mM) demonstrates the low affinity of O. oeni enzyme toward the L. lactis subsp. cremo…
Generation of a proton potential by succinate dehydrogenase of Bacillus subtilis functioning as a fumarate reductase
2001
The membrane fraction of Bacillus subtilis catalyzes the reduction of fumarate to succinate by NADH. The activity is inhibited by low concentrations of 2-(heptyl)-4-hydroxyquinoline-N-oxide (HOQNO), an inhibitor of succinate: quinone reductase. In sdh or aro mutant strains, which lack succinate dehydrogenase or menaquinone, respectively, the activity of fumarate reduction by NADH was missing. In resting cells fumarate reduction required glycerol or glucose as the electron donor, which presumably supply NADH for fumarate reduction. Thus in the bacteria, fumarate reduction by NADH is catalyzed by an electron transport chain consisting of NADH dehydrogenase (NADH:menaquinone reductase), menaqu…
111 Bioluminescence analysis and numerical evaluation of ATP-synthesis by native and reconstituted membranes containing bacterial ATP-synthase
1992
ATP-synthase is a large membrane protein complex, which plays a key role in the energy metabolism of most organisms. It consists of at least eight types of subunits and can be isolated and purified from several organisms, e.g. bacteria. The enzyme couples two reversible reactions: vectorial proton transport through a membrane and synthesis of the energy rich molecule ATP. Both can be investigated with vesicles from native membranes or with reconstituted liposomes from purified ATPsynthase. The analysis is complicated because ATP-synthase catalyzes ATP-synthesis as well as ATP-hydrolysis. Furthermore the ATP level of membrane samples is influenced by adenylate kinase activities of other enzy…
Molecular/chemical ecology in sponges. Evidence for an adaptive antibacterial response in Suberites domuncola
2004
Sponges (Porifera) represent the evolutionary oldest metazoan phylum still extant today. They have developed a complex Bauplan, based on the existence of structural and regulatory molecules; many of these have been cloned and analyzed in the past years. The demosponge Suberites domuncula has been used as a suitable model to demonstrate that these animals not only possess an adaptive immune response on the level of cytokines, but also, as pointed out here, on the level of synthesis of bioactive alkyl-lipid derivatives. From specimens of S. domuncula the two lyso-PAF (platelet-activating factor) compounds, 1-O-hexadecyl-sn-glycero-3-phosphocholine and 1-O-octadecyl-sn-glycero-3-phosphocholine…
Purification of ATP synthase from beef heart mitochondria (FoF1) and co-reconstitution with monomeric bacteriorhodopsin into liposomes capable of lig…
1993
ATP synthase was isolated from beef heart mitochondria by extraction with N,N-bis-(3-D-gluconamidopropyl)deoxycholamide or by traditional cholate extraction. The enzyme was purified subsequently by ion-exchange and gel-permeation chromatographies in the presence of glycerol and the protease inhibitor diisopropylfluorophosphate. The ATP synthase consisted of 12–14 subunits and contained three tightly bound nucleotides. The co-reconstitution of crude or purified ATP synthase with monomeric bacteriorhodopsin by the method of detergent incubation of liposomes yielded proteoliposomes capable of light-driven ATP synthesis, as detected with a luciferase system for at least 30 min. The reaction was…
Neuronal Nitric Oxide Synthase
2007
Neuronal nitric oxides synthase (nNOS; also referred to as NOS1 or NOS I) is a low-output enzyme that is primarily expressed in neurons. Like eNOS, it is a low-output NOS whose activity is regulated by Ca++ and calmodulin, and that produces NO in a pulsatile fashion. nNOS has a widespread distribution in the central and peripheral nervous systems. In addition, nNOS mRNA transcripts and/or protein have also been detected in non-neuronal cell types, such as rhabdomyocytes, epithelial cells, mast cells, and neutrophils …
In vivo evaluation of the interaction between the Escherichia coli IGP synthase subunits using the Bacterial Two-Hybrid system
2020
ABSTRACT Histidine biosynthesis is one of the most characterized metabolic routes for its antiquity and its central role in cellular metabolism; indeed, it represents a cross-road between nitrogen metabolism and de novo synthesis of purines. This interconnection is due to the activity of imidazole glycerol phosphate synthase, a heterodimeric enzyme constituted by the products of two his genes, hisH and hisF, encoding a glutamine amidotransferase and a cyclase, respectively. Despite their interaction was suggested by several in vitro experiments, their in vivo complex formation has not been demonstrated. On the contrary, the analysis of the entire Escherichia coli interactome performed using…
Vasoactive intestinal peptide stimulation of cyclic guanosine monophosphate formation: further evidence for a role of nitric oxide synthase and cytos…
1993
In the rat pineal gland vasoactive intestinal peptide (VIP) and beta-adrenergic agonists stimulate cyclic guanosine monophosphate (cGMP) formation and their action is amplified by alpha 1-adrenergic agonists. Since beta-adrenergic stimulation of cGMP is suggested to involve activation of nitric oxide (NO) synthase and NO-mediated activation of cytosolic guanylate cyclase (GC), we investigated the effects of the NO synthase inhibitor N-monomethyl-L-arginine (L-NMMA) and of the cytosolic GC inhibitor methylene blue (MB) on VIP receptor-stimulated cGMP formation. Both L-NMMA and MB depressed VIP-induced cGMP formation as well as alpha 1-adrenergic potentiation of VIP-stimulated cGMP formation …