Search results for "AUGER"

showing 10 items of 144 documents

The rapid atmospheric monitoring system of the Pierre Auger Observatory

2012

The Pierre Auger Observatory is a facility built to detect air showers produced by cosmic rays above 1017 eV. During clear nights with a low illuminated moon fraction, the UV fluorescence light produced by air showers is recorded by optical telescopes at the Observatory. To correct the observations for variations in atmospheric conditions, atmospheric monitoring is performed at regular intervals ranging from several minutes (for cloud identification) to several hours (for aerosol conditions) to several days (for vertical profiles of temperature, pressure, and humidity). In 2009, the monitoring program was upgraded to allow for additional targeted measurements of atmospheric conditions shor…

[PHYS.ASTR.HE]Physics [physics]/Astrophysics [astro-ph]/High Energy Astrophysical Phenomena [astro-ph.HE]AstronomyFOS: Physical sciencesCosmic rayReal-time monitoring01 natural sciencesLarge detector systems for particle and astroparticle physics Real-time monitoring Control and monitor systems onlineOptical telescopeObservatory0103 physical sciencesSHOWERSLarge detector systems for particle and astroparticle physics; Real-time monitoring; Control and monitor systems onlineFLUORESCENCE010303 astronomy & astrophysicsInstrumentationInstrumentation and Methods for Astrophysics (astro-ph.IM)DETECTORMathematical PhysicsRemote sensingEvent reconstructionPierre Auger ObservatoryHigh Energy Astrophysical Phenomena (astro-ph.HE)010308 nuclear & particles physicsLarge detector systems for particle and astroparticle physicsControl and monitor systems online[SDU.ASTR.HE]Sciences of the Universe [physics]/Astrophysics [astro-ph]/High Energy Astrophysical Phenomena [astro-ph.HE]FísicaENERGY-SPECTRUMMonitoring programControl and monitor systems online; Large detector systems for particle and astroparticle physics; Real-time monitoringAerosolATMOSFERA (MONITORAMENTO)Air showerExperimental High Energy PhysicsFísica nuclearAstrophysics - Instrumentation and Methods for AstrophysicsAstrophysics - High Energy Astrophysical Phenomena
researchProduct

Bounds on the density of sources of ultra-high energy cosmic rays from the Pierre Auger Observatory

2013

We derive lower bounds on the density of sources of ultra-high energy cosmic rays from the lack of significant clustering in the arrival directions of the highest energy events detected at the Pierre Auger Observatory. The density of uniformly distributed sources of equal intrinsic intensity was found to be larger than similar to (0.06 – 5) x 10(-4) Mpc(-3) at 95% CL, depending on the magnitude of the magnetic defections. Similar bounds, in the range (0.2 – 7) x 10(-4) Mpc(-3), were obtained for sources following the local matter distribution.

[PHYS.ASTR.HE]Physics [physics]/Astrophysics [astro-ph]/High Energy Astrophysical Phenomena [astro-ph.HE]Ciencias FísicasAstronomyAstrophysics::High Energy Astrophysical PhenomenaFOS: Physical sciencesultra-high energy cosmic raysCosmic rayAstrophysicsultra high energy cosmic raysAstrophysics::Cosmology and Extragalactic Astrophysics01 natural sciencesAugerNUMBERObservatoryCosmic ray experiments0103 physical sciencesultra-high energy cosmic rayUltra-high-energy cosmic ray010303 astronomy & astrophysicsDETECTORLuminosity functionPierre Auger ObservatoryPhysicsHigh Energy Astrophysical Phenomena (astro-ph.HE)FÍSICA DE PARTÍCULASRange (particle radiation)SPECTRUMCosmologia010308 nuclear & particles physics[SDU.ASTR.HE]Sciences of the Universe [physics]/Astrophysics [astro-ph]/High Energy Astrophysical Phenomena [astro-ph.HE]Astronomy and AstrophysicsUltra high energy cosmic raysAstronomíaLUMINOSITY FUNCTIONMagnitude (astronomy)Experimental High Energy PhysicsComputingMethodologies_DOCUMENTANDTEXTPROCESSINGAstronomiaFísica nuclearcosmic ray experimentsAstrophysics - High Energy Astrophysical Phenomenacosmic ray experiments; ultra high energy cosmic raysCIENCIAS NATURALES Y EXACTAS
researchProduct

Interpretation of the depths of maximum of extensive air showers measured by the Pierre Auger Observatory

2013

To interpret the mean depth of cosmic ray air shower maximum and its dispersion, we parametrize those two observables as functions of the first two moments of the ln A distribution. We examine the goodness of this simple method through simulations of test mass distributions. The application of the parameterization to Pierre Auger Observatory data allows one to study the energy dependence of the mean ln A and of its variance under the assumption of selected hadronic interaction models. We discuss possible implications of these dependences in term of interaction models and astrophysical cosmic ray sources.

[PHYS.ASTR.HE]Physics [physics]/Astrophysics [astro-ph]/High Energy Astrophysical Phenomena [astro-ph.HE]Ciencias FísicasAstronomyAstrophysics::High Energy Astrophysical PhenomenaHadronFOS: Physical sciencesCosmic rayultra high energy cosmic rays01 natural sciencesultra high energy cosmic rayInterpretation (model theory)//purl.org/becyt/ford/1 [https]Nuclear physics0103 physical sciencesPARTICLES010306 general physicsDispersion (water waves)High Energy Astrophysical Phenomena (astro-ph.HE)PhysicsPierre Auger ObservatoryCOMPOSICIÓN DE MASAEXPERIMENTO AUGER010308 nuclear & particles physicsPhysics[SDU.ASTR.HE]Sciences of the Universe [physics]/Astrophysics [astro-ph]/High Energy Astrophysical Phenomena [astro-ph.HE]Astrophysics::Instrumentation and Methods for AstrophysicsAstronomy and AstrophysicsObservableASTROFÍSICA//purl.org/becyt/ford/1.3 [https]RAYOS COSMICOSAstronomíaENERGY COSMIC-RAYSMODELDistribution (mathematics)Air showerParticlesUltra High Energy Cosmic RaysExperimental High Energy PhysicsSIMULATIONComputingMethodologies_DOCUMENTANDTEXTPROCESSINGEnergy cosmic-raysFísica nuclearcosmic ray experimentsAstrophysics - High Energy Astrophysical PhenomenaCIENCIAS NATURALES Y EXACTASSimulationcosmic ray experiments; ultra high energy cosmic raysModel
researchProduct

Measurement of the Depth of Maximum of Extensive Air Showers above 10(18) eV

2010

We describe the measurement of the depth of maximum, Xmax, of the longitudinal development of air showers induced by cosmic rays. Almost four thousand events above 10¹⁸ eV observed by the fluorescence detector of the Pierre Auger Observatory in coincidence with at least one surface detector station are selected for the analysis. The average shower maximum was found to evolve with energy at a rate of (106⁺³⁵₋₂₁) g/cm²/decade below 1018.24 ± 0.05 eV and (24 ± 3) g/cm²/decade above this energy. The measured shower-to-shower fluctuations decrease from about 55 to 26 g/cm². The interpretation of these results in terms of the cosmic ray mass composition is briefly discussed.

[PHYS.ASTR.HE]Physics [physics]/Astrophysics [astro-ph]/High Energy Astrophysical Phenomena [astro-ph.HE]FLUORESCENCE LIGHTGeneral Physics and AstronomyPierre Auger Observatory; depth of maximum; fluorescence detector; cosmic raysFOS: Physical sciencesCosmic rayChemical CompositionAstrophysicsMass compositionENERGIA01 natural sciencesCoincidenceAugerNuclear physicsPhysics and Astronomy (all)cosmic rays0103 physical sciencesRECONSTRUCTIONHigh-Energy Cosmic Ray010303 astronomy & astrophysicsDETECTORCiencias ExactasPierre Auger ObservatoryPhysicsHigh Energy Astrophysical Phenomena (astro-ph.HE)MeasurementSPECTRUM010308 nuclear & particles physicsPhysics[SDU.ASTR.HE]Sciences of the Universe [physics]/Astrophysics [astro-ph]/High Energy Astrophysical Phenomena [astro-ph.HE]Pierre Auger ExperimentDetectorPrimary compositionFísicaPierre Auger ObservatoryCOSMIC-RAYSCosmic raylongitudinal developmentLongitudinal developmentRESOLUTIONFísica nuclearfluorescenceAstrophysics - High Energy Astrophysical PhenomenaenergyPhysical Review Letters
researchProduct

Search for signatures of magnetically-induced alignment in the arrival directions measured by the Pierre Auger Observatory

2011

We present the results of an analysis of data recorded at the Pierre Auger Observatory in which we search for groups of directionally-aligned events (or ‘multiplets’) which exhibit a correlation between arrival direc- tion and the inverse of the energy. These signatures are expected from sets of events coming from the same source after having been deflected by intervening coherent magnetic fields. The observation of several events from the same source would open the possibility to accurately reconstruct the position of the source and also measure the integral of the component of the magnetic field orthogonal to the trajectory of the cos- mic rays. We describe the largest multiplets found an…

[PHYS.ASTR.HE]Physics [physics]/Astrophysics [astro-ph]/High Energy Astrophysical Phenomena [astro-ph.HE]Field (physics)Astronomyultra-high energy cosmic rays; Pierre Auger Observatory; arrival directionsFOS: Physical sciencesCosmic rayAstrophysics01 natural sciencesCosmic RayAugerPosition (vector)0103 physical sciencesFIELDPierre auger observatory010303 astronomy & astrophysicsUltra-high energy cosmic rayDETECTORCiencias ExactasHigh Energy Astrophysical Phenomena (astro-ph.HE)Pierre Auger ObservatoryPhysicsArrival directions010308 nuclear & particles physics[SDU.ASTR.HE]Sciences of the Universe [physics]/Astrophysics [astro-ph]/High Energy Astrophysical Phenomena [astro-ph.HE]PhysicsIsotropyFísicaAstronomy and AstrophysicsASTROFÍSICAUltra-high energy cosmic raysMagnetic fieldExperimental High Energy PhysicsData analysisComputingMethodologies_DOCUMENTANDTEXTPROCESSINGFísica nuclearAstrophysics - High Energy Astrophysical Phenomena[PHYS.ASTR]Physics [physics]/Astrophysics [astro-ph]RAIOS CÓSMICOSArrival directionUltra-High Energy Cosmic Ray
researchProduct

Muons in air showers at the Pierre Auger Observatory

2015

We present the first hybrid measurement of the average muon number in air showers at ultrahigh energies, initiated by cosmic rays with zenith angles between 62° and 80°. The measurement is based on 174 hybrid events recorded simultaneously with the surface detector array and the fluorescence detector of the Pierre Auger Observatory. The muon number for each shower is derived by scaling a simulated reference profile of the lateral muon density distribution at the ground until it fits the data. A 1019eV shower with a zenith angle of 67°, which arrives at the surface detector array at an altitude of 1450 m above sea level, contains on average (2.68±0.04±0.48(sys))×107 muons with energies large…

[PHYS.ASTR.HE]Physics [physics]/Astrophysics [astro-ph]/High Energy Astrophysical Phenomena [astro-ph.HE]Nuclear and High Energy PhysicsPhysics::Instrumentation and DetectorsCosmic-ray interactionsAstronomyAstrophysics::High Energy Astrophysical PhenomenaFOS: Physical sciencesCosmic rayextensive atmospherical showers muon density muon number Pierre Auger Observatory cosmic radiation UHEHadronic interaction models7. Clean energyAugerSettore FIS/04 - Fisica Nucleare e SubnucleareNuclear physicsAltitudeSettore FIS/05 - Astronomia e AstrofisicaObservatoryNERGY COSMIC-RAYS DETECTOR MODEL.Extensive air showerscosmic radiation UHEDETECTORScalingCosmic raysZenithHigh Energy Astrophysical Phenomena (astro-ph.HE)PhysicsPierre Auger ObservatoryMuonNERGY COSMIC-RAYSSettore FIS/01 - Fisica Sperimentaleenergy cosmic-rays; detector; modelAstrophysics::Instrumentation and Methods for AstrophysicsFísica[ PHYS.ASTR.HE ] Physics [physics]/Astrophysics [astro-ph]/High Energy Astrophysical Phenomena [astro-ph.HE]Pierre Auger ObservatoryASTROFÍSICAextensive atmospherical showersmuon numberMODELmuon densityExperimental High Energy PhysicsComputingMethodologies_DOCUMENTANDTEXTPROCESSINGFísica nuclearHigh Energy Physics::ExperimentAstrophysics - High Energy Astrophysical PhenomenaPhysical Review D
researchProduct

Upper limit on the cosmic-ray photon fraction at EeV energies from the Pierre Auger Observatory

2009

From direct observations of the longitudinal development of ultra-high energy air showers performed with the Pierre Auger Observatory, upper limits of 3.8%, 2.4%, 3.5% and 11.7% (at 95% c.l.) are obtained on the fraction of cosmic-ray photons above 2, 3, 5 and 10 EeV (1 EeV equivalent to 10(18) eV), respectively. These are the first experimental limits on ultra-high energy photons at energies below 10 EeV. The results complement previous constraints on top-down models from array data and they reduce systematic uncertainties in the interpretation of shower data in terms of primary flux, nuclear composition and proton-air cross-section.

[PHYS.ASTR.HE]Physics [physics]/Astrophysics [astro-ph]/High Energy Astrophysical Phenomena [astro-ph.HE]PhotonAstronomyFOS: Physical sciencesFluxCosmic rayFotonesAstrophysicsEXTENSIVE AIR-SHOWERS01 natural sciences7. Clean energyNuclear physicsCascada atmosféricaUltra high energy (UHE)0103 physical sciencesLimit (mathematics)FLUORESCENCEUltra-high energy cosmic ray010303 astronomy & astrophysicsDETECTORCosmic raysCiencias ExactasHigh Energy Astrophysical Phenomena (astro-ph.HE)Pierre Auger ObservatoryPhysics010308 nuclear & particles physics[SDU.ASTR.HE]Sciences of the Universe [physics]/Astrophysics [astro-ph]/High Energy Astrophysical Phenomena [astro-ph.HE]FísicaAstronomy and AstrophysicsPierre Auger ObservatoryPROFILESRadiación cósmicaPhotonLongitudinal development13. Climate actionphoton fractionComputingMethodologies_DOCUMENTANDTEXTPROCESSINGAstrophysics - High Energy Astrophysical Phenomena
researchProduct

The Pierre Auger Observatory scaler mode for the study of solar activity modulation of galactic cosmic rays

2011

Since data-taking began in January 2004, the Pierre Auger Observatory has been recording the count rates of low energy secondary cosmic ray particles for the self-calibration of the ground detectors of its surface detector array. After correcting for atmospheric effects, modulations of galactic cosmic rays due to solar activity and transient events are observed. Temporal variations related with the activity of the heliosphere can be determined with high accuracy due to the high total count rates. In this study, the available data are presented together with an analysis focused on the observation of Forbush decreases, where a strong correlation with neutron monitor data is found.

[PHYS.ASTR.HE]Physics [physics]/Astrophysics [astro-ph]/High Energy Astrophysical Phenomena [astro-ph.HE][PHYS.ASTR.IM]Physics [physics]/Astrophysics [astro-ph]/Instrumentation and Methods for Astrophysic [astro-ph.IM]010504 meteorology & atmospheric sciencesCherenkov detectorAuger ExperimentAstronomyAstrophysics::High Energy Astrophysical PhenomenaCosmic rayParticle detectorsAstrophysics01 natural sciencesCosmic RayCHERENKOV DETECTORAugerlaw.inventionlaw0103 physical sciencesCherenkov detectors; Large detector systems for particle and astroparticle physics; Particle detectorsBURSTSWATERForbush decreaseUltra-high-energy cosmic ray010303 astronomy & astrophysicsGeneralLiterature_REFERENCE(e.g.dictionariesencyclopediasglossaries)InstrumentationMathematical Physics0105 earth and related environmental sciencesPhysicsPierre Auger ObservatoryFÍSICA DE PARTÍCULASNeutron monitorLarge detector systems for particle and astroparticle physicsPhysics[SDU.ASTR.HE]Sciences of the Universe [physics]/Astrophysics [astro-ph]/High Energy Astrophysical Phenomena [astro-ph.HE]Cherenkov detectorsAstrophysics::Instrumentation and Methods for AstrophysicsAstronomyFísica[SDU.ASTR.IM]Sciences of the Universe [physics]/Astrophysics [astro-ph]/Instrumentation and Methods for Astrophysic [astro-ph.IM]Solar activtyExperimental High Energy PhysicsLarge detector systems for particle and astroparticle physicFísica nuclearParticle detectorHeliosphereJournal of Instrumentation
researchProduct

The Lateral Trigger Probability function for the Ultra-High Energy Cosmic Ray Showers detected by the Pierre Auger Observatory

2011

In this paper we introduce the concept of Lateral Trigger Probability (LTP) function, i.e., the probability for an Extensive Air Shower (EAS) to trigger an individual detector of a ground based array as a function of distance to the shower axis, taking into account energy, mass and direction of the primary cosmic ray. We apply this concept to the surface array of the Pierre Auger Observatory consisting of a 1.5 km spaced grid of about 1600 water Cherenkov stations. Using Monte Carlo simulations of ultra-high energy showers the LTP functions are derived for energies in the range between 1017 and 1019 eV and zenith angles up to 65. A parametrization combining a step function with an exponenti…

[PHYS.ASTR.HE]Physics [physics]/Astrophysics [astro-ph]/High Energy Astrophysical Phenomena [astro-ph.HE][PHYS.ASTR.IM]Physics [physics]/Astrophysics [astro-ph]/Instrumentation and Methods for Astrophysic [astro-ph.IM]AstronomyAstrophysics::High Energy Astrophysical PhenomenaExtensive air showerUltra-high Energy Cosmic RayMonte Carlo methodFOS: Physical sciencesCosmic rayEXTENSIVE AIR-SHOWERSTrigger performance01 natural sciences7. Clean energyUltra-high Energy Cosmic Rays; Pierre Auger Observatory; Extensive air showers; Trigger performance; Surface detector; Hybrid detectorHigh Energy Physics - ExperimentAugerNuclear physicsHigh Energy Physics - Experiment (hep-ex)0103 physical sciencesUltra-high-energy cosmic ray010303 astronomy & astrophysicsCiencias ExactasZenithCherenkov radiationUltra-High Energy Cosmic RaysPhysicsPierre Auger ObservatoryHigh Energy Astrophysical Phenomena (astro-ph.HE)010308 nuclear & particles physicsPhysicsHybrid detector[SDU.ASTR.HE]Sciences of the Universe [physics]/Astrophysics [astro-ph]/High Energy Astrophysical Phenomena [astro-ph.HE]Surface detectorAstrophysics::Instrumentation and Methods for AstrophysicsFísicaAstronomy and AstrophysicsPierre Auger ObservatoryUltra-high Energy Cosmic Rays[SDU.ASTR.IM]Sciences of the Universe [physics]/Astrophysics [astro-ph]/Instrumentation and Methods for Astrophysic [astro-ph.IM]Air showerExperimental High Energy PhysicsSIMULATIONComputingMethodologies_DOCUMENTANDTEXTPROCESSINGFísica nuclearExtensive Air ShowersAstrophysics - High Energy Astrophysical PhenomenaRAIOS CÓSMICOS
researchProduct

Identifying clouds over the Pierre Auger Observatory using infrared satellite data

2013

We describe a new method of identifying night-time clouds over the Pierre Auger Observatory using infrared data from the Imager instruments on the GOES-12 and GOES-13 satellites. We compare cloud. identifications resulting from our method to those obtained by the Central Laser Facility of the Auger Observatory. Using our new method we can now develop cloud probability maps for the 3000 km(2) of the Pierre Auger Observatory twice per hour with a spatial resolution of similar to 2.4 km by similar to 5.5 km. Our method could also be applied to monitor cloud cover for other ground-based observatories and for space-based observatories. (C) 2013 Elsevier B.V. All rights reserved.

[PHYS.ASTR.HE]Physics [physics]/Astrophysics [astro-ph]/High Energy Astrophysical Phenomena [astro-ph.HE][PHYS.ASTR.IM]Physics [physics]/Astrophysics [astro-ph]/Instrumentation and Methods for Astrophysic [astro-ph.IM]Atmospheric MonitoringSatellitesInfraredAstronomyCloud coverFOS: Physical sciencesAtmospheric monitoring01 natural sciencesCiencias de la Tierra y relacionadas con el Medio AmbienteAuger//purl.org/becyt/ford/1 [https]//purl.org/becyt/ford/1.5 [https]ObservatoryClouds0103 physical sciencesExtensive air showers010306 general physicsDETECTORInstrumentation and Methods for Astrophysics (astro-ph.IM)Image resolutionCiencias ExactasPhysicsPierre Auger ObservatoryUHE Cosmic Rays atmosphere010308 nuclear & particles physicsPhysics[SDU.ASTR.HE]Sciences of the Universe [physics]/Astrophysics [astro-ph]/High Energy Astrophysical Phenomena [astro-ph.HE]FísicaAstronomyPierre Auger ObservatoryAstronomy and AstrophysicsUltra-high energy cosmic rays[SDU.ASTR.IM]Sciences of the Universe [physics]/Astrophysics [astro-ph]/Instrumentation and Methods for Astrophysic [astro-ph.IM]INFRAVERMELHOExperimental High Energy PhysicsComputingMethodologies_DOCUMENTANDTEXTPROCESSINGPierre Auger observatoryultra-high energy cosmic rays; Pierre Auger Observatory; extensive air showers; atmospheric monitoring; clouds; satellitesFísica nuclearSatelliteCentral Laser FacilityExtensive Air ShowersAstrophysics - Instrumentation and Methods for AstrophysicsMeteorología y Ciencias AtmosféricasSYSTEMCIENCIAS NATURALES Y EXACTASAstroparticle Physics
researchProduct