Search results for "AUTOIMMUNE"
showing 10 items of 648 documents
EBI2 – Sensor for dihydroxycholesterol gradients in neuroinflammation
2018
Dihydroxycholesterols such as 7α,25-dihydroxysterols (7α,25-OHC) and 7α,27-OHC are generated from cholesterol by the enzymes CH25H, CYP7B1 and CYP27A1 in steady state but also in the context of inflammation. The G-protein coupled receptor (GPCR) Epstein-Barr virus-induced gene 2 (EBI2), also known as GPR183, senses these oxysterols and induces chemotactic migration of immune cells towards higher concentrations of these ligands. We recently showed that these ligands are upregulated in the CNS in experimental autoimmune encephalomyelitis (EAE), an animal model for multiple sclerosis and that EBI2 enhanced early infiltration of encephalitogenic T cells into the CNS. In this short-review we dis…
Graph Theoretical Framework of Brain Networks in Multiple Sclerosis: A Review of Concepts.
2019
Abstract Network science provides powerful access to essential organizational principles of the human brain. It has been applied in combination with graph theory to characterize brain connectivity patterns. In multiple sclerosis (MS), analysis of the brain networks derived from either structural or functional imaging provides new insights into pathological processes within the gray and white matter. Beyond focal lesions and diffuse tissue damage, network connectivity patterns could be important for closely tracking and predicting the disease course. In this review, we describe concepts of graph theory, highlight novel issues of tissue reorganization in acute and chronic neuroinflammation an…
Gatekeeper role of brain antigen‐presenting CD11c + cells in neuroinflammation
2015
Multiple sclerosis is the most frequent chronic inflammatory disease of the CNS. The entry and survival of pathogenic T cells in the CNS are crucial for the initiation and persistence of autoimmune neuroinflammation. In this respect, contradictory evidence exists on the role of the most potent type of antigen-presenting cells, dendritic cells. Applying intravital two-photon microscopy, we demonstrate the gatekeeper function of CNS professional antigen-presenting CD11c(+) cells, which preferentially interact with Th17 cells. IL-17 expression correlates with expression of GM-CSF by T cells and with accumulation of CNS CD11c(+) cells. These CD11c(+) cells are organized in perivascular clusters…
TGF-β inhibitor Smad7 regulates dendritic cell-induced autoimmunity
2017
TGF-β is an anti-inflammatory cytokine whose signaling is negatively controlled by Smad7. Previously, we established a role for Smad7 in the generation of autoreactive T cells; however, the function of Smad7 in dendritic cells (DCs) remains elusive. Here, we demonstrate that DC-specific Smad7 deficiency resulted in elevated expression of the transcription factors Batf3 and IRF8, leading to increased frequencies of CD8(+)CD103(+) DCs in the spleen. Furthermore, Smad7-deficient DCs expressed higher levels of indoleamine 2,3-dioxygenase (IDO), an enzyme associated with tolerance induction. Mice devoid of Smad7 specifically in DCs are resistant to the development of experimental autoimmune ence…
An Assay to Determine Mechanisms of Rapid Autoantibody-Induced Neurotransmitter Receptor Endocytosis and Vesicular Trafficking in Autoimmune Encephal…
2019
N-Methyl-D-aspartate (NMDA) receptors (NMDARs) are among the most important excitatory neurotransmitter receptors in the human brain. Autoantibodies to the human NMDAR cause the most frequent form of autoimmune encephalitis involving autoantibody-mediated receptor cross-linking and subsequent internalization of the antibody-receptor complex. This has been deemed to represent the predominant antibody effector mechanism depleting the NMDAR from the synaptic and extra-synaptic neuronal cell membrane. To assess in detail the molecular mechanisms of autoantibody-induced NMDAR endocytosis, vesicular trafficking, and exocytosis we transiently co-expressed rat GluN1-1a-EGFP and GluN2B-ECFP alone or…
T cells mediate autoantibody-induced cutaneous inflammation and blistering in epidermolysis bullosa acquisita
2016
AbstractT cells are key players in autoimmune diseases by supporting the production of autoantibodies. However, their contribution to the effector phase of antibody-mediated autoimmune dermatoses, i.e., tissue injury and inflammation of the skin, has not been investigated. In this paper, we demonstrate that T cells amplify the development of autoantibody-induced tissue injury in a prototypical, organ-specific autoimmune disease, namely epidermolysis bullosa acquisita (EBA) – characterized and caused by autoantibodies targeting type VII collagen. Specifically, we show that immune complex (IC)-induced inflammation depends on the presence of T cells – a process facilitated by T cell receptor (…
Role of the epigenetic factor Sirt7 in neuroinflammation and neurogenesis.
2017
Epigenetic regulators are increasingly recognized as relevant modulators in the immune and nervous system. The class of sirtuins consists of NAD+-dependent histone deacetylases that regulate transcription. Sirtuin family member Sirt1 has already been shown to influence the disease course in an animal model of autoimmune neuroinflammation (experimental autoimmune encephalomyelitis (EAE). A role of Sirt7, a related epigenetic regulator, on immune system regulation has been proposed before, as these mice are more susceptible to develop inflammatory cardiomyopathy. Sirt7-/- animals showed no differences in clinical score compared to wild-type littermates after EAE induction with myelin oligoden…
Guidelines for biomarkers in autoimmune rheumatic diseases - evidence based analysis
2018
Autoimmune rheumatic diseases are characterised by an abnormal immune system response, complement activation, cytokines dysregulation and inflammation. In last years, despite many progresses in managing these patients, it has been shown that clinical remission is reached in less than 50% of patients and a personalised and tailored therapeutic approach is still lacking resulting in a significant gap between guidelines and real-world practice. In this context, the need for biomarkers facilitating early diagnosis and profiling those individuals at the highest risk for a poor outcome has become of crucial interest. A biomarker generally refers to a measured characteristic which may be used as a…
Autoimmune diseases and 8.1 ancestral haplotype: an update
2018
The aim of the present review is to provide an update of the current research into the pathogenesis of autoimmune diseases associated with 8.1 ancestral haplotype. This is a common Caucasoid haplotype carried by most people who type for HLA-B8, DR3. Numerous genetic studies reported that individuals with certain HLA alleles have a higher risk of specific autoimmune disorders than those without these alleles. However, much remains to be learned about the heritability of autoimmune conditions. Recently, progress and advances in the field of genome-wide-association studies have revolutionized the capacity to perform large, economically feasible, and statistically robust analyses of HLA within …
Regulatory T cells and vaccine effectiveness in older adults. Challenges and prospects
2021
Since the discovery of lymphocytes with immunosuppressive activity, increasing interest has arisen in their possible influence on the immune response induced by vaccines. Regulatory T cells (Tregs) are essential for maintaining peripheral tolerance, preventing autoimmune diseases, and limiting chronic inflammatory diseases. However, they also limit beneficial immune responses by suppressing anti-infectious and anti-tumor immunity. Mounting evidence suggests that Tregs are involved, at least in part, in the low effectiveness of immunization against various diseases where it has been difficult to obtain protective vaccines. Interestingly, increased activity of Tregs is associated with aging, …