Search results for "AUTOPHAGY"

showing 10 items of 322 documents

The RAB GTPase RAB18 modulates macroautophagy and proteostasis

2017

Macroautophagy is a conserved degradative pathway and its deterioration is linked to disturbances in cellular proteostasis and multiple diseases. Here, we show that the RAB GTPase RAB18 modulates autophagy in primary human fibroblasts. The knockdown of RAB18 results in a decreased autophagic activity, while its overexpression enhances the degradative pathway. Importantly, this function of RAB18 is dependent on RAB3GAP1 and RAB3GAP2, which might act as RAB GEFs and stimulate the activity of the RAB GTPase. Moreover, the knockdown of RAB18 deteriorates proteostasis and results in the intracellular accumulation of ubiquitinated degradation-prone proteins. Thus, the RAB GTPase RAB18 is a positi…

0301 basic medicineRecombinant Fusion Proteinsrab3 GTP-Binding ProteinsPrimary Cell CultureBiophysicsGTPaseBiochemistry03 medical and health sciencesUbiquitinGenes ReporterAutophagyHumansRNA Small InterferingMolecular BiologyGene knockdownbiologyProtein StabilityChemistryfungiAutophagyCell BiologyFibroblastsCell biologyLuminescent Proteins030104 developmental biologyProteostasisGene Expression Regulationrab GTP-Binding ProteinsProteolysisbiology.proteinCancer researchRabSignal transductionRAB18Signal TransductionBiochemical and Biophysical Research Communications
researchProduct

Induction of skeletal abnormalities and autophagy in Paracentrotus lividus sea urchin embryos exposed to gadolinium.

2017

Abstract Gadolinium (Gd) concentration is constantly increasing in the aquatic environment, becoming an emergent environmental pollutant. We investigated the effects of Gd on Paracentrotus lividus sea urchin embryos, focusing on skeletogenesis and autophagy. We observed a delay of biomineral deposition at 24 hours post fertilization (hpf), and a strong impairment of skeleton growth at 48 hpf, frequently displayed by an asymmetrical pattern. Skeleton growth was found partially resumed in recovery experiments. The mesodermal cells designated to biomineralization were found correctly migrated at 24 hpf, but not at 48 hpf. Western blot analysis showed an increase of the LC3-II autophagic marker…

0301 basic medicineSea urchinWater Pollutants Radioactiveanimal structuresEmbryo NonmammalianMorphogenesisGadolinium010501 environmental sciencesAquatic ScienceEcotoxicologyOceanography01 natural sciencesParacentrotus lividuslaw.inventionEnvironmental impact03 medical and health sciencesDevelopmental abnormalityWestern blotConfocal microscopylawbiology.animalmedicineAutophagyAnimalsSettore BIO/06 - Anatomia Comparata E CitologiaSea urchin0105 earth and related environmental sciencesbiologymedicine.diagnostic_testMetalfungiAutophagyEmbryoGeneral MedicineAnatomybiology.organism_classificationSkeleton (computer programming)PollutionCell biology030104 developmental biologySkeletogenesiMedical drugEmbryoembryonic structuresParacentrotusMarine environmental research
researchProduct

Oxidative stress, autophagy, epigenetic changes and regulation by miRNAs as potential therapeutic targets in osteoarthritis

2015

Aging is a natural process characterized by the declining ability of the different organs and tissues to respond to stress, increasing homeostatic imbalance and risk of disease. Osteoarthritis (OA) is a multifactorial disease in which cartilage degradation is a central feature. Aging is the main risk factor for OA. In OA cartilage, a decrease in the number of chondrocytes and in their ability to regenerate the extracellular matrix and adequately respond to stress has been described. OA chondrocytes show a senescence secretory phenotype (SSP) consisting on the overproduction of cytokines (interleukins 1 and 6), growth factors (e.g., epidermal growth factor) and matrix metalloproteinases (MMP…

0301 basic medicineSenescenceMAPK/ERK pathwayAgingProgrammed cell deathDNA damageBiologymedicine.disease_causeBiochemistryChondrocyteEpigenesis Genetic03 medical and health sciencesChondrocytesOsteoarthritisAutophagymedicineAnimalsHumansMolecular Targeted TherapyEpigeneticsCellular SenescencePharmacologyAutophagyDNA MethylationCell biologyMicroRNAsOxidative Stress030104 developmental biologymedicine.anatomical_structureImmunologyReactive Oxygen SpeciesOxidative stressDNA DamageBiochemical Pharmacology
researchProduct

On the origin of BAG(3) and its consequences for an expansion of BAG3's role in protein homeostasis

2021

The B-cell CLL 2-associated athanogene (BAG) protein family in general and BAG3, in particular, are pivotal elements of cellular protein homeostasis, with BAG3 playing a major role in macroautophagy. In particular, in the contexts of senescence and degeneration, BAG3 has exhibited an essential role often related to its capabilities to organize and remove aggregated proteins. Exciting studies in different species ranging from human, murine, zebrafish, and plant samples have delivered vital insights into BAG3s' (and other BAG proteins') functions and their regulations. However, so far no studies have addressed neither BAG3's evolution nor its phylogenetic position in the BAG family.

0301 basic medicineSenescenceProteasome Endopeptidase ComplexProtein family610 MedizinBiologyProtein HomeostasisBAG3BiochemistryEvolution MolecularWW domain03 medical and health sciences0302 clinical medicineProtein Domains610 Medical sciencesAutophagyAnimalsHumansMolecular BiologyZebrafishCellular SenescencePhylogenyAdaptor Proteins Signal TransducingAutophagyFungiCell BiologyPlantsbiology.organism_classificationCell biology030104 developmental biologyProteostasis030220 oncology & carcinogenesisProteolysisProteostasisbiology.proteinApoptosis Regulatory ProteinsSignal TransductionJournal of Cellular Biochemistry
researchProduct

Therapeutic potential of polyphenols in cardiovascular diseases: Regulation of mTOR signaling pathway

2020

Cardiovascular diseases comprise of non-communicable disorders that involve the heart and/or blood vessels and have become the leading cause of death worldwide with increased prevalence by age. mTOR is a serine/threonine-specific protein kinase which plays a central role in many physiological processes including cardiovascular diseases, and also integrates various proliferative signals, nutrient and energy abundance and stressful situations. mTOR also acts as central regulator during chronic stress, mitochondrial dysfunction and deregulated autophagy which are associated with senescence. Under oxidative stress, mTOR has been reported to exert protective effects regulating apoptosis and auto…

0301 basic medicineSenescenceRegulatorDiseasemedicine.disease_causeNatural product03 medical and health sciences0302 clinical medicineAnimalsHumansMedicineChronic stressProtein kinase API3K/AKT/mTOR pathwayPharmacologybusiness.industryTOR Serine-Threonine KinasesAutophagyPolyphenols030104 developmental biologyCardiovascular Diseases030220 oncology & carcinogenesismTORCancer researchTranscription factorbusinessOxidative stressSignal TransductionPharmacological Research
researchProduct

The Sigma-1 Receptor at the Crossroad of Proteostasis, Neurodegeneration, and Autophagy.

2020

Neurodegenerative diseases are linked to dysfunctional proteostasis and disturbed autophagy. Here, we discuss how the sigma-1 receptor (Sig-1R) may act at the intersection of this interaction, as loss-of-function mutations of this unique chaperone are associated with defective autophagy and its pharmacological activation induces autophagic activity.

0301 basic medicineSigma-1 receptorbiologyGeneral NeuroscienceNeurodegenerationAutophagyNeurodegenerative Diseasesmedicine.diseaseCell biology03 medical and health sciences030104 developmental biology0302 clinical medicineProteostasisChaperone (protein)biology.proteinmedicineAutophagyProteostasisHumansReceptors sigmaReceptor030217 neurology & neurosurgeryTrends in neurosciences
researchProduct

Yeast thioredoxin reductase Trr1p controls TORC1-regulated processes

2018

The thioredoxin system plays a predominant role in the control of cellular redox status. Thioredoxin reductase fuels the system with reducing power in the form of NADPH. The TORC1 complex promotes growth and protein synthesis when nutrients, particularly amino acids, are abundant. It also represses catabolic processes, like autophagy, which are activated during starvation. We analyzed the impact of yeast cytosolic thioredoxin reductase TRR1 deletion under different environmental conditions. It shortens chronological life span and reduces growth in grape juice fermentation. TRR1 deletion has a global impact on metabolism during fermentation. As expected, it reduces oxidative stress tolerance…

0301 basic medicineThioredoxin Reductase 1Estrès oxidatiuThioredoxin reductaseScienceMicrobiologiaMechanistic Target of Rapamycin Complex 1Grape Juice FermentationArticleAntioxidants03 medical and health scienceschemistry.chemical_compoundTORC1 PathwayYeastsAmino AcidsMultidisciplinary030102 biochemistry & molecular biologyKinaseAutophagyChronological Life SpanQFungal geneticsRGlutathioneMetabolismTORC1 ComplexThioredoxin SystemYeastCell biology030104 developmental biologychemistryMedicineThioredoxinGene DeletionSignal TransductionScientific Reports
researchProduct

Biological Effect of a Hybrid Anticancer Agent Based on Kinase and Histone Deacetylase Inhibitors on Triple-Negative (MDA-MB231) Breast Cancer Cells

2016

We examined the effects of the histone deacetylase inhibitor (HDACi) suberoylanilide\ud hydroxamic acid (SAHA) combined with the vascular endothelial growth factor receptor-1/2 inhibitor\ud (3Z)-5-hydroxy-3-(1H-pyrrol-2-ylmethylidene)-2,3-dihydro-1H-indol-2-one on MDA-MB-231 breast\ud cancer cells (triple-negative) in the form of both a cocktail of the separate compounds and a chemically\ud synthesized hybrid (N-hydroxy-N'-[(3Z)-2-oxo-3-(1H-pyrrol-2-ylmethylidene)-2,3-dihydro-1H-indol-\ud 5-yl]octanediamide). Comparative flow cytometric and Western blot analyses were performed on\ud cocktail- and hybrid-treated cells to evaluate cell cycle distribution, autophagy/apoptosis modulation,\ud an…

0301 basic medicineVascular Endothelial Growth Factor AIndolesCytotoxicityTriple Negative Breast Neoplasmsbreast cancer; MDA-MB231 cells; histone deacetylase inhibitor; vascular endothelial growth factor receptor-2 inhibitor; cytotoxicity; cell cycle; apoptosis; autophagy; mitochondrial metabolismHydroxamic AcidsCatalysi0302 clinical medicineBreast cancerTumor Cells CulturedCytotoxic T cellSettore BIO/06 - Anatomia Comparata E CitologiaSpectroscopyVorinostatVascular endothelial growth factor receptor-2 inhibitorApoptosis; Autophagy; Breast cancer; Cell cycle; Cytotoxicity; Histone deacetylase inhibitor; MDA-MB231 cells; Mitochondrial metabolism; Vascular endothelial growth factor receptor-2 inhibitor; Catalysis; Molecular Biology; Spectroscopy; Computer Science Applications1707 Computer Vision and Pattern Recognition; Physical and Theoretical Chemistry; Organic Chemistry; Inorganic ChemistryKinaseHistone deacetylase inhibitorapoptosisComputer Science Applications1707 Computer Vision and Pattern RecognitionGeneral MedicineCell cycleFlow CytometryComputer Science ApplicationsCell biologyMDA-MB231 cell030220 oncology & carcinogenesisFemaleQD0241Programmed cell deathmedicine.drug_classCell SurvivalBlotting WesternAntineoplastic AgentsBiologyCell cycleCatalysisArticleInorganic Chemistry03 medical and health sciencesmedicineAutophagyHumansPhysical and Theoretical ChemistryProtein Kinase InhibitorsMolecular BiologyQD0415Histone deacetylase inhibitorAutophagyOrganic ChemistryApoptosiHistone Deacetylase Inhibitors030104 developmental biologyApoptosisMitochondrial metabolismMDA-MB231 cellsHistone deacetylaseInternational Journal of Molecular Sciences; Volume 17; Issue 8; Pages: 1235
researchProduct

Functions and Therapeutic Potential of Extracellular Hsp60, Hsp70, and Hsp90 in Neuroinflammatory Disorders

2021

Neuroinflammation is implicated in central nervous system (CNS) diseases, but the molecular mechanisms involved are poorly understood. Progress may be accelerated by developing a comprehensive view of the pathogenesis of CNS disorders, including the immune and the chaperone systems (IS and CS). The latter consists of the molecular chaperones; cochaperones; and chaperone cofactors, interactors, and receptors of an organism and its main collaborators in maintaining protein homeostasis (canonical function) are the ubiquitin–proteasome system and chaperone-mediated autophagy. The CS has also noncanonical functions, for instance, modulation of the IS with induction of proinflammatory cytokines. …

0301 basic medicineamyotrophic lateral sclerosislcsh:TechnologychaperonopathiesProinflammatory cytokinelcsh:Chemistrys disease03 medical and health sciences0302 clinical medicinechaperone systemmedicineamyotrophic lateral sclerosiGeneral Materials Sciencelcsh:QH301-705.5InstrumentationchaperonotherapyNeuroinflammationFluid Flow and Transfer Processesbiologylcsh:TMechanism (biology)Process Chemistry and Technologymolecular chaperonesNeurodegenerationAutophagyGeneral EngineeringParkinson’S diseasemolecular chaperonemedicine.diseaseHuntington’ s diseaseHsp90lcsh:QC1-999Computer Science Applications030104 developmental biologylcsh:Biology (General)lcsh:QD1-999lcsh:TA1-2040multiple sclerosiChaperone (protein)Alzheimerbiology.proteinHSP60lcsh:Engineering (General). Civil engineering (General)Alzheimer’s diseaseNeurosciencelcsh:Physics030217 neurology & neurosurgeryHuntington’s diseaseApplied Sciences
researchProduct

Chloroquine plays a cell-dependent role in the response to treatment of pancreatic adenocarcinoma

2018

In this study, our aim is to assess the role played by autophagy and its inhibition in the different PDAC cellular compartments, and its involvement in chemo-resistance using primary human pancreatic cancer-derived cells (PCC) and Cancer Associated Fibroblasts (CAF). Autophagy flux, as measured by LC3-I and -II in the presence of Chloroquine, showed a variable level in PCC and CAFs. We found no correlation between autophagy level and degree of tumor differentiation. Association of Chloroquine with gemcitabine, 5FU, oxaliplatin, irinotecan and docetaxel revealed that its effect on survival is cell- and drug-dependent in vitro and in vivo. In addition, we demonstrated that autophagy in CAFs c…

0301 basic medicineautophagyCIENCIAS MÉDICAS Y DE LA SALUDCiencias de la Salud//purl.org/becyt/ford/3.3 [https]03 medical and health sciences0302 clinical medicinepancreas cancerChloroquineMedicineCHLOROQUINEbusiness.industryAutophagygemcitabineCancerChloroquinemedicine.diseaseGemcitabineOxaliplatinOtras Ciencias de la SaludIrinotecanPANCREAS CANCER030104 developmental biologyGEMCITABINEOncologyDocetaxel030220 oncology & carcinogenesisCancer researchAdenocarcinomaAUTOPHAGY//purl.org/becyt/ford/3 [https]businessResearch Papermedicine.drugOncotarget
researchProduct