Search results for "Abelian group"

showing 10 items of 160 documents

Albanese Maps and Fundamental Groups of Varieties With Many Rational Points Over Function Fields

2020

We investigate properties of the Albanese map and the fundamental group of a complex projective variety with many rational points over some function field, and prove that every linear quotient of the fundamental group of such a variety is virtually abelian, as well as that its Albanese map is surjective, has connected fibres, and has no multiple fibres in codimension one.

Fundamental groupPure mathematicsGeneral Mathematics01 natural sciencesSurjective functionMathematics - Algebraic GeometryMathematics::Algebraic Geometry0103 physical sciencesFOS: MathematicsNumber Theory (math.NT)0101 mathematicsAbelian groupAlgebraic Geometry (math.AG)Projective varietyQuotientFunction fieldMathematicsMathematics - Number Theory010102 general mathematics[MATH.MATH-AG] Mathematics [math]/Algebraic Geometry [math.AG][MATH.MATH-CV]Mathematics [math]/Complex Variables [math.CV]Codimension[MATH.MATH-CV] Mathematics [math]/Complex Variables [math.CV][MATH.MATH-AG]Mathematics [math]/Algebraic Geometry [math.AG]010307 mathematical physicsVariety (universal algebra)International Mathematics Research Notices
researchProduct

Polyomino coloring and complex numbers

2008

AbstractUsually polyominoes are represented as subsets of the lattice Z2. In this paper we study a representation of polyominoes by Gaussian integers. Polyomino {(x1,y1),(x2,y2),…,(xs,ys)}⊂Z2 is represented by the set {(x1+iy1),(x2+iy2),…,(xs+iys)}⊂Z[i]. Then we consider functions of type f:P→G from the set P of all polyominoes to an abelian group G, given by f(x,y)≡(x+iy)m(modv), where v is prime in Z[i],1≤m<N(v) (N(v) is the norm of v). Using the arithmetic of the ring Z[i] we find necessary and sufficient conditions for such a function to be a coloring map.

Gaussian integersDiscrete mathematicsGeneral Computer SciencePolyominoGaussian integerPolyomino tilingLattice (group)Tileability criteriaType (model theory)Prime (order theory)Theoretical Computer ScienceCombinatoricssymbols.namesakeIntegersymbolsColoringFunction compositionAbelian groupComputer Science(all)MathematicsTheoretical Computer Science
researchProduct

Classifying G-graded algebras of exponent two

2019

Let F be a field of characteristic zero and let $$\mathcal{V}$$ be a variety of associative F-algebras graded by a finite abelian group G. If $$\mathcal{V}$$ satisfies an ordinary non-trivial identity, then the sequence $$c_n^G(\mathcal{V})$$ of G-codimensions is exponentially bounded. In [2, 3, 8], the authors captured such exponential growth by proving that the limit $$^G(\mathcal{V}) = {\rm{lim}}_{n \to \infty} \sqrt[n]{{c_n^G(\mathcal{V})}}$$ exists and it is an integer, called the G-exponent of $$\mathcal{V}$$ . The purpose of this paper is to characterize the varieties of G-graded algebras of exponent greater than 2. As a consequence, we find a characterization for the varieties with …

General Mathematics010102 general mathematicsZero (complex analysis)Field (mathematics)0102 computer and information sciencesGraded algebras Exponent GrowthCharacterization (mathematics)01 natural sciencesCombinatoricsSettore MAT/02 - AlgebraInteger010201 computation theory & mathematicsBounded functionExponentPolynomial identity exponent codimension graded algebra0101 mathematicsVariety (universal algebra)Abelian groupMathematics
researchProduct

SURFACE SUBGROUPS OF RIGHT-ANGLED ARTIN GROUPS

2007

We consider the question of which right-angled Artin groups contain closed hyperbolic surface subgroups. It is known that a right-angled Artin group $A(K)$ has such a subgroup if its defining graph $K$ contains an $n$-hole (i.e. an induced cycle of length $n$) with $n\geq 5$. We construct another eight "forbidden" graphs and show that every graph $K$ on $\le 8$ vertices either contains one of our examples, or contains a hole of length $\ge 5$, or has the property that $A(K)$ does not contain hyperbolic closed surface subgroups. We also provide several sufficient conditions for a \RAAG to contain no hyperbolic surface subgroups. We prove that for one of these "forbidden" subgraphs $P_2(6)$, …

General MathematicsGeometric Topology (math.GT)Group Theory (math.GR)Van Kampen diagramRelatively hyperbolic groupConductorCombinatoricsMathematics - Geometric TopologyMathematics::Group TheoryArtin L-functionFOS: MathematicsArtin groupArtin reciprocity lawCharacteristic subgroupAbelian groupMathematics - Group TheoryMathematicsInternational Journal of Algebra and Computation
researchProduct

Kurzweil-Henstock type integral in fourier analysis on compact zero-dimensional group

2009

Abstract A Kurzweil-Henstock type integral defined on a zero-dimensional compact abelian group is studied and used to obtain a generalization of some results related to the problem of recovering, by generalized Fourier formulae, the coefficients of convergent series with respect to the characters of such a group.

General MathematicsMathematical analysisMathematics::Classical Analysis and ODEsLocally compact groupFourier integral operatorsymbols.namesakeFourier transformSettore MAT/05 - Analisi MatematicaFourier analysisImproper integralsymbolsAbelian groupCompact zero-dimensional group characters of group Kurzweil-Hestock integral Perrron integral Fourier series coefficient problem.Fourier seriesConvergent seriesMathematicsTatra Mountains Mathematical Publications
researchProduct

On a class of generalised Schmidt groups

2015

In this paper families of non-nilpotent subgroups covering the non-nilpotent part of a finite group are considered. An A 5 -free group possessing one of these families is soluble, and soluble groups with this property have Fitting length at most three. A bound on the number of primes dividing the order of the group is also obtained.

Group (mathematics)Applied MathematicsMathematics::Rings and AlgebrasGrups Teoria deCycle graph (algebra)Sporadic groupFinite groupsNon-abelian groupCombinatoricsMathematics::Group TheoryGroup of Lie typeLocally finite groupSimple groupNilpotent groupsMaximal subgroupsOrder (group theory)ÀlgebraMATEMATICA APLICADAMathematics::Representation TheoryMathematicsAnnali di Matematica Pura ed Applicata (1923 -)
researchProduct

The probability that $x$ and $y$ commute in a compact group

2010

We show that a compact group $G$ has finite conjugacy classes, i.e., is an FC-group if and only if its center $Z(G)$ is open if and only if its commutator subgroup $G'$ is finite. Let $d(G)$ denote the Haar measure of the set of all pairs $(x,y)$ in $G \times G$ for which $[x,y] = 1$; this, formally, is the probability that two randomly picked elements commute. We prove that $d(G)$ is always rational and that it is positive if and only if $G$ is an extension of an FC-group by a finite group. This entails that $G$ is abelian by finite. The proofs involve measure theory, transformation groups, Lie theory of arbitrary compact groups, and representation theory of compact groups. Examples and re…

Haar measureGroup (mathematics)General MathematicsCommutator subgroupactions on Hausdorff spaces20C05 20P05 43A05Center (group theory)Group Theory (math.GR)Functional Analysis (math.FA)CombinatoricsMathematics - Functional AnalysisProbability of commuting pairConjugacy classCompact groupFOS: MathematicsComponent (group theory)compact groupCharacteristic subgroupAbelian groupMathematics - Group TheoryMathematics
researchProduct

Finding Invariants of Group Actions on Function Spaces, a General Methodology from Non-Abelian Harmonic Analysis

2008

In this paper, we describe a general method using the abstract non-Abelian Fourier transform to construct “rich” invariants of group actions on functional spaces.

Harmonic analysisGroup actionPure mathematicssymbols.namesakeFourier transformCompact groupFunction spacesymbolsConstruct (python library)Abelian groupMathematicsHaar measure
researchProduct

Henstock type integral in harmonic analysis on zero-dimensional groups

2006

AbstractA Henstock type integral is defined on compact subsets of a locally compact zero-dimensional abelian group. This integral is applied to obtain an inversion formula for the multiplicative integral transform.

Henstock integralApplied MathematicsMathematical analysisLine integralRiemann integralRiemann–Stieltjes integralSingular integralLocally compact groupHenstock–Fourier seriesVolume integralsymbols.namesakeLocally compact zero-dimensional abelian groupImproper integralsymbolsCharacters of a groupInversion formulaDaniell integralMultiplicative integral transformAnalysisMathematicsJournal of Mathematical Analysis and Applications
researchProduct

Integration of functions ranging in complex Riesz space and some applications in harmonic analysis

2015

The theory of Henstock—Kurzweil integral is generalized to the case of functions ranging in complex Riesz space R and defined on any zero-dimensional compact Abelian group. The constructed integral is used to solve the problem of recovering the R-valued coefficients of series in systems of characters of these groups by using generalized Fourier formulas.

Henstock integralSeries (mathematics)Riesz representation theoremRiesz potentialintegral transformGeneral MathematicsMathematical analysisMathematics::Classical Analysis and ODEsHilbert spacegroup characterRiesz spacezero-dimensional compact Abelian groupcharacterHenstock—Kurzweil integralComplex Riesz space character Henstock integral basis integral transform.Riesz transformsymbols.namesakeFourier transformM. Riesz extension theorembasissymbolsMathematics (all)complex Riesz spaceMathematicsMathematical Notes
researchProduct