Search results for "Adam"

showing 10 items of 372 documents

CCDC 2041028: Experimental Crystal Structure Determination

2021

Related Article: Goulielmina Anyfanti, Antonio Bauzá, Lorenzo Gentiluomo, João Rodrigues, Gustavo Portalone, Antonio Frontera, Kari Rissanen, Rakesh Puttreddy|2021|Frontiers in Chemistry|9||doi:10.3389/fchem.2021.623595

(1357-tetraazaadamantane-13-diium-13-diyl)bis((25-dioxopyrrolidin-1-yl)iodate)Space GroupCrystallographyCrystal SystemCrystal StructureCell ParametersExperimental 3D Coordinates
researchProduct

Trail-following pheromones in basal termites, with special reference to Mastotermes darwiniensis

2007

0098-0331 (Print) Journal Article; In the framework of an evolutionary study, trail pheromones have been studied in the most basal extant termite, Mastotermes darwiniensis (Mastotermitidae), and two other basal termites, the Termopsidae Porotermes adamsoni (Porotermitinae) and Stolotermes victoriensis (Stolotermitinae). Although workers of M. darwiniensis do not walk in single file while exploring a new environment under experimental conditions and are unable to follow artificial trails in 'open field' experiments, they do secrete a trail-following pheromone from their sternal glands. This unique behavior might reflect a primitive function of communication of the sternal gland. The major co…

0106 biological sciencesFatty Acids/chemistry/pharmacologyPHYLOGENYIsoptera/*physiologyTermopsidaeCHEMICAL COMMUNICATIONZoologyKalotermitidaeIsopteraTrail pheromoneMotor Activity010603 evolutionary biology01 natural sciencesBiochemistryPheromonesDose-Response RelationshipMastotermes darwiniensis[SDV.IDA]Life Sciences [q-bio]/Food engineering(E)-2610-TRIMETHYL-59-UNDECADIEN-1-OLAnimals[SPI.GPROC]Engineering Sciences [physics]/Chemical and Process EngineeringFORAGING BEHAVIORSTOLOTERMES VICTOTRIENSISEcology Evolution Behavior and SystematicsSTERNAL GLANDBehaviorbiologyBehavior AnimalDose-Response Relationship DrugEcologyFatty AcidsPOROTERMES ADAMSONIGeneral Medicinebiology.organism_classification010602 entomologyTermitidaeSex pheromonePheromonePheromones/chemistry/*pharmacologyDrugAnimal/*drug effects/physiologyRhinotermitidaeMotor Activity/*drug effects/physiology
researchProduct

LRP1 Modulates APP Intraneuronal Transport and Processing in Its Monomeric and Dimeric State.

2017

The low-density lipoprotein receptor-related protein 1, LRP1, interacts with APP and affects its processing. This is assumed to be mostly caused by the impact of LRP1 on APP endocytosis. More recently, also an interaction of APP and LRP1 early in the secretory pathway was reported whereat retention of LRP1 in the ER leads to decreased APP cell surface levels and in turn, to reduced Aβ secretion. Here, we extended the biochemical and immunocytochemical analyses by showing via live cell imaging analyses in primary neurons that LRP1 and APP are transported only partly in common (one third) but to a higher degree in distinct fast axonal transport vesicles. Interestingly, co-expression of LRP1 a…

0301 basic medicineADAM10amyloid precursor protein (APP)Endocytosislcsh:RC321-57103 medical and health sciencesCellular and Molecular Neuroscience0302 clinical medicinemental disordersSecretionReceptorMolecular Biologylcsh:Neurosciences. Biological psychiatry. NeuropsychiatrySecretory pathwayOriginal ResearchdimerizationChemistryVesicleLRP1030104 developmental biologyBiochemistrytransportBiophysicsAxoplasmic transportprocessinglow density lipoprotein receptor-related protein 1 (LRP1)030217 neurology & neurosurgeryNeuroscienceFrontiers in molecular neuroscience
researchProduct

Perivascular Cells in Diffuse Cutaneous Systemic Sclerosis Overexpress Activated ADAM12 and Are Involved in Myofibroblast Transdifferentiation and De…

2016

Objective.Microvascular damage is pivotal in the pathogenesis of systemic sclerosis (SSc), preceding fibrosis, and whose trigger is not still fully understood. Perivascular progenitor cells, with profibrotic activity and function, are identified by the expression of the isoform 12 of ADAM (ADAM12) and this molecule may be upregulated by transforming growth factor-β (TGF-β). The goal of this work was to evaluate whether pericytes in the skin of patients with diffuse cutaneous SSc (dcSSc) expressed ADAM12, suggesting their potential contribution to the fibrotic process, and whether TGF-β might modulate this molecule.Methods.After ethical approval, mesenchymal stem cells (MSC) and fibroblasts …

0301 basic medicineAdultMalePathologymedicine.medical_specialtyImmunologyADAM12 Protein03 medical and health sciencesYoung AdultRheumatologyFibrosisTransforming Growth Factor betamedicineImmunology and AllergyHumansProgenitor cellMyofibroblastsSkinintegumentary systembusiness.industryMedicine (all)FIBROSIS; PERICYTE; SYSTEMIC SCLEROSIS; Rheumatology; Immunology; Immunology and AllergyMesenchymal stem cellTransdifferentiationMesenchymal Stem CellsMiddle Agedmedicine.diseaseFibrosisActinsUp-RegulationSettore MED/16 - Reumatologia030104 developmental biologymedicine.anatomical_structurePERICYTEFIBROSIS; PERICYTE; SYSTEMIC SCLEROSIS; Immunology and Allergy; Rheumatology; Immunology; Medicine (all)SYSTEMIC SCLEROSISCell TransdifferentiationScleroderma DiffuseFemalePericyteBone marrowbusinessPericytesMyofibroblastTransforming growth factorThe Journal of rheumatology
researchProduct

Curcumin downregulates expression of opioid-related nociceptin receptor gene (OPRL1) in isolated neuroglia cells.

2018

Abstract Background: Curcumin (CC) exerts polyvalent pharmacological actions and multi-target effects, including pain relief and anti-nociceptive activity. In combination with Boswellia serrata extract (BS), curcumin shows greater efficacy in knee osteoarthritis management, presumably due to synergistic interaction of the ingredients. Aim: To elucidate the molecular mechanisms underlying the analgesic activity of curcumin and its synergistic interaction with BS. Methods: We performed gene expression profiling by transcriptome-wide mRNA sequencing in human T98G neuroglia cells treated with CC (Curamed), BS, and the combination of CC and BS (CC-BS; Curamin), followed by interactive pathways a…

0301 basic medicineCurcuminmedicine.drug_classNarcotic AntagonistsPharmaceutical ScienceDown-RegulationPharmacologyNociceptin Receptor03 medical and health sciencesOpioid receptorCell Line TumorDrug DiscoverymedicineHumansBoswelliaReceptorPharmacologyAnalgesicsChemistryPlant ExtractsGene expression profilingAnalgesics OpioidNociceptin receptor030104 developmental biologyMRNA SequencingComplementary and alternative medicineOpioidNeuropathic painReceptors OpioidMolecular MedicineADAMTS5 ProteinSignal transductionNeurogliamedicine.drugPhytomedicine : international journal of phytotherapy and phytopharmacology
researchProduct

ADAM10 in Alzheimer's disease: Pharmacological modulation by natural compounds and its role as a peripheral marker.

2019

Abstract Alzheimer’s disease (AD) represents a global burden in the economics of healthcare systems. Amyloid-β (Aβ) peptides are formed by amyloid-β precursor protein (AβPP) cleavage, which can be processed by two pathways. The cleavage by the α-secretase A Disintegrin And Metalloprotease 10 (ADAM10) releases the soluble portion (sAβPPα) and prevents senile plaques. This pathway remains largely unknown and ignored, mainly regarding pharmacological approaches that may act via different signaling cascades and thus stimulate non-amyloidogenic cleavage through ADAM10. This review emphasizes the effects of natural compounds on ADAM10 modulation, which eventuates in a neuroprotective mechanism. M…

0301 basic medicineFarmacologiaADAM10DiseaseRM1-950Natural compoundsCleavage (embryo)NeuroprotectionCatechin03 medical and health sciencesADAM10 ProteinAmyloid beta-Protein Precursor0302 clinical medicineAlzheimer DiseaseDisintegrinHumansSenile plaquesPharmacological modulationPharmacologyMetalloproteinaseAmyloid beta-PeptidesbiologyChemistryPlant ExtractsADAM10ProteinsGinkgo bilobaMembrane ProteinsGeneral Medicineα-SecretaseAlzheimer's disease030104 developmental biologyMalaltia d'AlzheimerNeuroprotective Agents030220 oncology & carcinogenesisPharmaceuticalbiology.proteinTherapeutics. PharmacologyAmyloid Precursor Protein SecretasesNeuroscienceAlzheimer’s diseaseProteïnesBiomarkersBiomedicinepharmacotherapy = Biomedecinepharmacotherapie
researchProduct

Genetic justification of severe COVID-19 using a rigorous algorithm

2021

Recent studies suggest excessive complement activation in severe coronavirus disease-19 (COVID-19). The latter shares common characteristics with complement-mediated thrombotic microangiopathy (TMA). We hypothesized that genetic susceptibility would be evident in patients with severe COVID-19 (similar to TMA) and associated with disease severity. We analyzed genetic and clinical data from 97 patients hospitalized for COVID-19. Through targeted next-generation-sequencing we found an ADAMTS13 variant in 49 patients, along with two risk factor variants (C3, 21 patients; CFH,34 patients). 31 (32%) patients had a combination of these, which was independently associated with ICU hospitalization (…

0301 basic medicineMaleThrombomodulinSeverity of Illness Index0302 clinical medicineRisk FactorsImmunology and AllergyMedicineComplement ActivationRigorous algorithmmedicine.diagnostic_testHigh-Throughput Nucleotide SequencingComplement C3EculizumabEculizumabMiddle AgedHospitalizationSettore ICAR/09 - Tecnica Delle CostruzioniIntensive Care UnitsFactor HComplement Factor HFemaleAlgorithmsmedicine.drugmedicine.medical_specialtyThrombotic microangiopathyCritical CareImmunologyComplementADAMTS13 Protein03 medical and health sciencesInternal medicineFull Length ArticleSeverity of illnessGenetic predispositionGenetic susceptibilityHumansGenetic Predisposition to DiseaseGenetic TestingRisk factorGenetic testingAgedbusiness.industryThrombotic MicroangiopathiesCOVID-19medicine.diseaseComplement system030104 developmental biologySARS-CoV2business030215 immunologyClinical Immunology (Orlando, Fla.)
researchProduct

Mice are not Men: ADAM30 Findings Emphasize a Broader Look Towards Murine Alzheimer's Disease Models

2016

Due to the growing population of people at advanced age, the number of patients affected by Alzheimer's disease (AD) is increasing tremendously. In 2015 about 46.8 million people suffered from AD worldwide which is estimated to increase to 131.5 million by 2050. Brains of AD patients all show a common histopathology; they are marked by an atrophy and degeneration that is caused by a severe loss of neurons and synapses (Braak and Del Tredici, 2012). Moreover, so-called extracellular senile plaques that consist of predominantly amyloid β (Aβ) peptides can be detected in the grey matter where they surround neurons. Since generation of Aβ peptides is hypothesized to play a major role in AD path…

0301 basic medicinePathologymedicine.medical_specialtyADAM10Populationlcsh:MedicineMice TransgenicGrey matterBiologyGeneral Biochemistry Genetics and Molecular BiologyPathogenesisMice03 medical and health sciences0302 clinical medicineAtrophyAlzheimer DiseasemedicineAmyloid precursor proteinAnimalsHumansSenile plaqueseducationlcsh:R5-920education.field_of_studylcsh:RP3 peptideGeneral Medicinemedicine.diseaseADAM ProteinsDisease Models Animal030104 developmental biologymedicine.anatomical_structureDisease ProgressionCommentarybiology.proteinlcsh:Medicine (General)Neuroscience030217 neurology & neurosurgeryEBioMedicine
researchProduct

Identification of Phlogacantholide C as a Novel ADAM10 Enhancer from Traditional Chinese Medicinal Plants

2016

Background: Alzheimer’s disease is one of the most prevalent dementias in the elderly population with increasing numbers of patients. One pivotal hallmark of this disorder is the deposition of protein aggregates stemming from neurotoxic amyloid-beta peptides. Synthesis of those peptides has been efficiently prevented in AD model mice by activation of an enzyme called alpha-secretase. Therefore, drugs with the capability to increase the expression of this enzyme, named ADAM10, have been suggested as a valuable therapeutic medication. Methods: We investigated 69 substances from a drug library derived from traditional Chinese medicine by luciferase reporter assay in human neuronal cells for th…

0301 basic medicinePhlogacanthus curviflorusADAM10lcsh:MedicineProtein aggregationBiologyPharmacologyArticle03 medical and health sciences0302 clinical medicineWestern blotGene expressionPhlogacantholide CmedicineAmyloid precursor proteinSecretionEnhancerADAM10; Amyloid precursor protein; Alzheimer’s disease; Norkurarinol; Phlogacantholide C; <i>Phlogacanthus curviflorus</i>; <i>Sophora flavescens</i>chemistry.chemical_classificationmedicine.diagnostic_testlcsh:RADAM10Norkurarinol030104 developmental biologyEnzymechemistrySophora flavescensAmyloid precursor proteinbiology.proteinAlzheimer’s disease030217 neurology & neurosurgeryMedicines
researchProduct

Quantitative Proteomics Reveals Changes Induced by TIMP-3 on Cell Membrane Composition and Novel Metalloprotease Substrates

2021

Ectodomain shedding is a key mechanism of several biological processes, including cell-communication. Disintegrin and metalloproteinases (ADAMs), together with the membrane-type matrix metalloproteinases, play a pivotal role in shedding transmembrane proteins. Aberrant shedding is associated to several pathological conditions, including arthritis. Tissue inhibitor of metalloproteases 3 (TIMP-3), an endogenous inhibitor of ADAMs and matrix metalloproteases (MMPs), has been proven to be beneficial in such diseases. Thus, strategies to increase TIMP-3 bioavailability in the tissue have been sought for development of therapeutics. Nevertheless, high levels of TIMP-3 may lead to mechanism-based …

0301 basic medicineProteomicsADAM15ProteomeCellMatrix metalloproteinaseMass SpectrometryCell membranelcsh:Chemistryanalysis [Proteome]lcsh:QH301-705.5proteomicSpectroscopybiologyChemistrytissue inhibitor of metalloproteases 3 (TIMP-3)General MedicineTransmembrane proteinComputer Science ApplicationsCell biologymedicine.anatomical_structureEctodomainddc:540TIMP3 protein humanmetalloproteinaseectodomain sheddingmetabolism [Tissue Inhibitor of Metalloproteinase-3]Quantitative proteomicsADAM15 protein humanchemistry [Cell Membrane]Catalysismetabolism [Cell Membrane]ArticlemetalloproteinasesInorganic Chemistry03 medical and health sciencestissue inhibitor of metalloproteases 3 (TIMP-3).medicineDisintegrinHumansPhysical and Theoretical ChemistryMolecular BiologyTissue Inhibitor of Metalloproteinase-3030102 biochemistry & molecular biologyOrganic ChemistryCell MembraneMembrane Proteinsmetabolism [Proteome]ADAM Proteins030104 developmental biologyHEK293 Cellslcsh:Biology (General)lcsh:QD1-999metabolism [ADAM Proteins]biology.proteinmetabolism [Membrane Proteins]International Journal of Molecular Sciences
researchProduct