Search results for "Additive Manufacturing"
showing 10 items of 53 documents
Green Composites Based on PLA and Agricultural or Marine Waste Prepared by FDM
2021
Three dimensional-printability of green composites is recently growing in importance and interest, especially in the view of feasibility to valorize agricultural and marine waste to attain green fillers capable of reducing bioplastic costs, without compromising their processability and performance from an environmental and mechanical standpoint. In this work, two lignocellulosic fillers, obtained from Opuntia ficus indica and Posidonia oceanica, were added to PLA and processed by FDM. Among the 3D printed biocomposites investigated, slight differences could be found in terms of PLA molecular weight and filler aspect ratio. It was shown that it is possible to replace up to 20% of bioplastic …
Microstructural characterization of a 3D-printed soil
2022
Transversal applications of 3D-printing (or Additive Manufacturing) have been recently implemented in the field of Geomechanics. In a 3D-printing process, the printed volume is obtained from successive layering of adjacent soil filaments. In this work, the fabric of an as-printed soil has been carried out by combining Mercury Intrusion Porosimetry (MIP) tests and Scanning Electron Microscope (SEM) observations, with the aim to highlight how the particle arrangements and the orientation and shape of pores are linked to the printing operation. The microstructural analyses showed that macropores are the result of the relative position of the filaments and their initial distortion in quasi-undr…
3D-Printed Products for Topical Skin Applications: From Personalized Dressings to Drug Delivery.
2021
3D printing has been widely used for the personalization of therapies and on-demand production of complex pharmaceutical forms. Recently, 3D printing has been explored as a tool for the development of topical dosage forms and wound dressings. Thus, this review aims to present advances related to the use of 3D printing for the development of pharmaceutical and biomedical products for topical skin applications, covering plain dressing and products for the delivery of active ingredients to the skin. Based on the data acquired, the important growth in the number of publications over the last years confirms its interest. The semisolid extrusion technique has been the most reported one, probably …
PROGETTAZIONE PER ADDITIVE MANUFACTURING DI ORTESI DI GOMITO PERSONALIZZATE E SVILUPPO DI MODELLO PARAMETRICO BASATO SU ALGORITMI GENERATIVI
Using coded excitation to maintain signal to noise for FMC+TFM on attenuating materials
2019
Ultrasonic Non-Destructive Evaluation using Full Matrix Capture (FMC) and Total Focusing Method (TFM) is used for high resolution imaging as every pixel is in optimal focus. FMC excites one element in turn, so operates with lower transmitted energy compared to phased array beamforming. The energy at a reflector is further reduced by the broad directivity pattern of the single element. The large number of Tx/Rx A-scans that contribute to each pixel recover the Signal-to-Noise Ratio (SNR) in the final TFM image. Maintaining this in the presence of attenuating materials is a challenge because relevant information in each A-scan signal is buried in the thermal noise, and the TFM process assumes…
Three-Dimensional Bioprinting for Cartilage Tissue Engineering: Insights into Naturally-Derived Bioinks from Land and Marine Sources
2022
In regenerative medicine and tissue engineering, the possibility to: (I) customize the shape and size of scaffolds, (II) develop highly mimicked tissues with a precise digital control, (III) manufacture complex structures and (IV) reduce the wastes related to the production process, are the main advantages of additive manufacturing technologies such as three-dimensional (3D) bioprinting. Specifically, this technique, which uses suitable hydrogel-based bioinks, enriched with cells and/or growth factors, has received significant consideration, especially in cartilage tissue engineering (CTE). In this field of interest, it may allow mimicking the complex native zonal hyaline cartilage organiza…
Titanium Lattice Structures Produced via Additive Manufacturing for a Bone Scaffold: A Review
2023
The progress in additive manufacturing has remarkably increased the application of lattice materials in the biomedical field for the fabrication of scaffolds used as bone substitutes. Ti6Al4V alloy is widely adopted for bone implant application as it combines both biological and mechanical properties. Recent breakthroughs in biomaterials and tissue engineering have allowed the regeneration of massive bone defects, which require external intervention to be bridged. However, the repair of such critical bone defects remains a challenge. The present review collected the most significant findings in the literature of the last ten years on Ti6Al4V porous scaffolds to provide a comprehensive summa…
Influence of Material-Related Aspectsof Additive and Subtractive Ti-6Al-4VManufacturing on Energy Demandand Carbon Dioxide Emissions
2017
The additive manufacturing of metal parts represents a promising process that could beused alongside traditional manufacturing methods. The research scenario in this field isstill largely unexplored, as far as the technological solutions adopted to integrate differentprocesses are concerned and in terms of environmental and economic impact assessment.In this article, an electron beam melting (EBM) process and a machining process have beenanalyzed and compared using a cradle-to-grave life cycle–based approach. The productionof components made of the Ti-6Al-4V alloy has been assumed as a case study. Theproposed methodology is able to account for all of the main factors of influence on energydem…
A new control parameter to predict micro-warping-induced job failure in LPBF of TI6AL4V titanium alloy
2023
Abstract Laser powder bed fusion (LPBF) includes a few printing techniques widely used, in recent years, concerning the additive manufacturing of Ti6Al4V alloys. These produced parts, typically utilized in sectors such as aerospace and biomedical, are characterized by very high added value. It is therefore fundamental to identify the influence of process parameters typical of LPBF technology on the occurrence of warping leading to process failure. This study deals with the characterization of single-track and “micro-scale” level warping phenomena which may lead to protrusion of material over the powder bed and process failure before normal termination. This phenomenon was investigated as a …
3D-Printed Solid Dispersion Drug Products.
2019
With the well-known advantages of additive manufacturing methods such as three-dimensional (3D) printing in drug delivery, it is disappointing that only one product has been successful in achieving regulatory approval in the past few years. Further research and development is required in this area to introduce more 3D printed products into the market. Our study investigates the potential of fixed dose combination solid dispersion drug products generated via 3D printing. Two model drugs&mdash