Search results for "Algebra"

showing 10 items of 4129 documents

Brauer correspondent blocks with one simple module

2019

One of the main problems in representation theory is to understand the exact relationship between Brauer corresponding blocks of finite groups. The case where the local correspondent has a unique simple module seems key. We characterize this situation for the principal p-blocks where p is odd.

20C20 20C15MatemáticasApplied MathematicsGeneral Mathematics010102 general mathematicsPrincipal (computer security)MathematicsofComputing_GENERAL01 natural sciencesRepresentation theoryAlgebra0103 physical sciencesKey (cryptography)FOS: Mathematics010307 mathematical physics0101 mathematicsRepresentation Theory (math.RT)Simple moduleMathematics - Representation TheoryMathematics
researchProduct

The average element order and the number of conjugacy classes of finite groups

2021

Abstract Let o ( G ) be the average order of the elements of G, where G is a finite group. We show that there is no polynomial lower bound for o ( G ) in terms of o ( N ) , where N ⊴ G , even when G is a prime-power order group and N is abelian. This gives a negative answer to a question of A. Jaikin-Zapirain.

20D15 20C15 20E45Finite groupPolynomialAlgebra and Number TheoryGroup (mathematics)010102 general mathematicsGroup Theory (math.GR)01 natural sciencesUpper and lower boundsElement OrderCombinatoricsConjugacy class0103 physical sciencesFOS: MathematicsOrder (group theory)010307 mathematical physics0101 mathematicsAbelian groupMathematics - Group TheoryG110 Pure MathematicsMathematics
researchProduct

Automorphisms of 2–dimensional right-angled Artin groups

2007

We study the outer automorphism group of a right-angled Artin group AA in the case where the defining graph A is connected and triangle-free. We give an algebraic description of Out.AA/ in terms of maximal join subgraphs in A and prove that the Tits’ alternative holds for Out.AA/. We construct an analogue of outer space for Out.AA/ and prove that it is finite dimensional, contractible, and has a proper action of Out.AA/. We show that Out.AA/ has finite virtual cohomological dimension, give upper and lower bounds on this dimension and construct a spine for outer space realizing the most general upper bound. 20F36; 20F65, 20F28

20F36outer spaceCohomological dimensionComputer Science::Digital LibrariesQuantitative Biology::Other01 natural sciencesContractible spaceUpper and lower boundsCombinatorics0103 physical sciences20F650101 mathematicsAlgebraic numberMathematics20F28Quantitative Biology::Biomolecules010102 general mathematicsAstrophysics::Instrumentation and Methods for AstrophysicsOuter automorphism groupAutomorphismGraphArtin groupright-angled Artin groups010307 mathematical physicsGeometry and Topologyouter automorphismsGeometry & Topology
researchProduct

Maximal subgroups and PST-groups

2013

A subgroup H of a group G is said r to permute with a subgroup K of G if HK is a subgroup of G. H is said to be permutable (resp. S-permutable) if it permutes with all the subgroups (resp. Sylow subgroups) of G. Finite groups in which permutability (resp. S-permutability) is a transitive relation are called PT-groups (resp. PST-groups). PT-, PST- and T-groups, or groups in which normality is transitive, have been extensively studied and characterised. Kaplan [Kaplan G., On T-groups, supersolvable groups, and maxmial subgroups, Arch. Math. (Basel), 2011, 96(1), 19-25)] presented some new characterisations of soluble T-groups. The main goal of this paper is to establish PT- and PST-versions o…

20e2820d05General MathematicsCombinatoricsLocally finite groupPermutabilityQA1-939Permutable prime20d10Algebra over a fieldMathematicsDiscrete mathematicsTransitive relation20f16Group (mathematics)20e15Sylow theoremsGrups Teoria deSylow-permutabilitySupersolubilityFinite groupsNumber theoryMaximal subgroupsÀlgebraMATEMATICA APLICADAMathematics
researchProduct

Estimates for the differences of positive linear operators and their derivatives

2019

The present paper deals with the estimate of the differences of certain positive linear operators and their derivatives. Oxur approach involves operators defined on bounded intervals, as Bernstein operators, Kantorovich operators, genuine Bernstein-Durrmeyer operators, and Durrmeyer operators with Jacobi weights. The estimates in quantitative form are given in terms of the first modulus of continuity. In order to analyze the theoretical results in the last section, we consider some numerical examples.

41A25 41A36Applied MathematicsNumerical analysisLinear operatorsNumerical Analysis (math.NA)010103 numerical & computational mathematics01 natural sciencesModulus of continuity010101 applied mathematicsSection (fiber bundle)Mathematics - Classical Analysis and ODEsBounded functionTheory of computationClassical Analysis and ODEs (math.CA)FOS: MathematicsOrder (group theory)Applied mathematicsMathematics - Numerical Analysis0101 mathematicsAlgebra over a fieldMathematics
researchProduct

Frame-related Sequences in Chains and Scales of Hilbert Spaces

2022

Frames for Hilbert spaces are interesting for mathematicians but also important for applications in, e.g., signal analysis and physics. In both mathematics and physics, it is natural to consider a full scale of spaces, and not only a single one. In this paper, we study how certain frame-related properties of a certain sequence in one of the spaces, such as completeness or the property of being a (semi-) frame, propagate to the other ones in a scale of Hilbert spaces. We link that to the properties of the respective frame-related operators, such as analysis or synthesis. We start with a detailed survey of the theory of Hilbert chains. Using a canonical isomorphism, the properties of frame se…

42C15 46C99 47A70Algebra and Number TheoryHilbert chainsLogicFunctional Analysis (math.FA)Mathematics - Functional AnalysisSettore MAT/05 - Analisi Matematicaframes; scales of Hilbert spaces; Hilbert chains; Bessel sequences; semi-framesframesFOS: Mathematicsscales of Hilbert spacessemi-framesGeometry and TopologyBessel sequencesMathematical PhysicsAnalysis
researchProduct

Structure of locally convex quasi C * -algebras

2008

There are examples of C*-algebras A that accept a locally convex *-topology τ coarser than the given one, such that Ã[τ] (the completion of A with respect to τ) is a GB*-algebra. The multiplication of A[τ] may be or not be jointly continuous. In the second case, Ã[*] may fail being a locally convex *-algebra, but it is a partial *-algebra. In both cases the structure and the representation theory of Ã[τ] are investigated. If Ã+ τ denotes the τ-closure of the positive cone A+ of the given C*-algebra A, then the property Ā+ τ ∩ (-Ā+ τ) = {0} is decisive for the existence of certain faithful *-representations of the corresponding *-algebra Ã[τ]

46L05quasi *-algebrasGeneral Mathematicslocally convex quasi $C^*$-algebrasRegular polygonStructure (category theory)FOS: Physical sciencesContext (language use)Mathematical Physics (math-ph)quasi-positivityCombinatoricsunbounded *-representationsMultiplicationquasi ∗-algebras quasi-positivity locally convex quasi C ∗ -algebras unbounded ∗-representations.46K10Algebra over a field46K70Settore MAT/07 - Fisica MatematicaMathematical PhysicsTopology (chemistry)47L60MathematicsJournal of the Mathematical Society of Japan
researchProduct

On the existence of at least a solution for functional integral equations via measure of noncompactness

2017

In this article, we use fixed-point methods and measure of noncompactness theory to focus on the problem of establishing the existence of at least a solution for the following functional integral equation ¶ \[u(t)=g(t,u(t))+\int_{0}^{t}G(t,s,u(s))\,ds,\quad t\in{[0,+\infty[},\] in the space of all bounded and continuous real functions on $\mathbb{R}_{+}$ , under suitable assumptions on $g$ and $G$ . Also, we establish an extension of Darbo’s fixed-point theorem and discuss some consequences.

47H08Pure mathematicsBanach spaceAlgebra and Number Theory010102 general mathematicsMathematical analysisExtension (predicate logic)Space (mathematics)45N0501 natural sciencesMeasure (mathematics)Integral equation010101 applied mathematics54H25Settore MAT/05 - Analisi MatematicaBounded functionfunctional integral equationmeasure of noncompactnessSettore MAT/03 - Geometria0101 mathematicsAnalysisMathematicsBanach Journal of Mathematical Analysis
researchProduct

Adaptive Number Knowledge in Secondary School Students: Profiles and Antecedents

2019

Cited By :1 Export Date: 10 February 2021 Correspondence Address: McMullen, J.; Department of Teacher EducationFinland; email: jake.mcmullen@utu.fi The present study aims to examine inter-individual differences in adaptive number knowledge in secondary school students. Adaptive number knowledge is defined as a well-connected network of knowledge of numerical characteristics and arithmetic relations. Substantial and relevant qualitative differences in the strategies and expression of adaptive number knowledge have been found in primary school students still in the process of learning arithmetic. We present a study involving 879 seventh-grade students that examines the structure of individual…

515 PsychologyProcess (engineering)yläkoululaisetlcsh:BF1-990Experimental and Cognitive Psychology050105 experimental psychologyFluencylatent profile analysisMathematics educationComputingMilieux_COMPUTERSANDEDUCATIONmatemaattiset taidot0501 psychology and cognitive sciencesAlgebra over a fieldAdaptive expertiseindividual differencesStructure (mathematical logic)Numerical Analysis4. EducationApplied Mathematicslcsh:Mathematics05 social sciences050301 educationMixture modeladaptive number knowledgelcsh:QA1-939Expression (mathematics)lcsh:PsychologyFormal instructionadaptive expertisenumeerinen lukutaitoarithmetic developmentPsychology0503 educationJournal of Numerical Cognition
researchProduct

Quantization of Poisson Lie Groups and Applications

1996

LetG be a connected Poisson-Lie group. We discuss aspects of the question of Drinfel'd:can G be quantized? and give some answers. WhenG is semisimple (a case where the answer isyes), we introduce quantizable Poisson subalgebras ofC ∞(G), related to harmonic analysis onG; they are a generalization of F.R.T. models of quantum groups, and provide new examples of quantized Poisson algebras.

58B30Pure mathematicsGeneralizationPoisson distribution01 natural sciencesHarmonic analysissymbols.namesakeQuantization (physics)58F060103 physical sciences0101 mathematicsQuantumMathematical PhysicsComputingMilieux_MISCELLANEOUSMathematicsPoisson algebraDiscrete mathematics[MATH.MATH-RT]Mathematics [math]/Representation Theory [math.RT]Group (mathematics)010102 general mathematicsLie groupStatistical and Nonlinear Physics81S1017B37[ MATH.MATH-RT ] Mathematics [math]/Representation Theory [math.RT]symbols010307 mathematical physics16W30
researchProduct