Search results for "Alkoxides"
showing 3 items of 3 documents
Lanthanide molecular oxohydroxides: Synthesis and characterisation of [Y4(μ4-O)(μ-OEt)2(μ,η2-AAA)2(η2-AAA)3]2(μ3-OH)4(μ3-OEt)2 (HAAA = allylacetatoac…
2007
International audience; The reaction between Y5O(OPri)13 and allylacetatoacetate or 2-(methacryloyloxy)ethyl acetatoacetate in 1:5 stoichiometry afforded octanuclear oxohydroxo species. Structural characterization was achieved for the allylacetatoacetate derivative homo and copolymerisation reactions with styrene were evaluated for doping of polystyrene. Hydoxo species, Y4(OH)2(AAA)10, where also obtained by reacting Y[N(SiMe3)]3 and HAAA.
Di-n-butyltin(IV)-catalyzed dimethyl carbonate synthesis from carbon dioxide and methanol: An in situ high pressure 119Sn{1H} NMR spectroscopic study
2011
The reactivity of five di-n-butyltin(IV) complexes, n-Bu2Sn(OR)(2) (1), n-Bu2SnO (3), [n-Bu2Sn(OR)](2)O (4), (n-Bu2SnO)(2)(CO2) (6) and (n-Bu2SnO)(6)[(n-Bu2SnOR)(2)(CO3)](2) (7) (R = CH3), with CO2, suggested as possible catalyst precursors and key-intermediates for the direct synthesis of dimethyl carbonate from carbon dioxide and methanol, has been investigated using high-pressure Sn-119{H-1} NMR (HP-NMR) spectroscopy. Four of the five precursors studied, i.e. 3, 4, 6 and 7 give rise to an identical Sn-119{H-1} NMR pattern which can be explicitly attributed to the fingerprint of the dimeric form of the 1-methoxy-3-methylcarbonatotetrabutyldistannoxane {5}(2). However, with 1, a new pair o…
Formation of dibutyl carbonate and butylcarbamate via CO2 insertion in titanium(IV) butoxide and reaction with n-butylamine
2016
Abstract The species resulting from insertion of 12CO2 and 13CO2 into titanium(IV) butoxide is for the first time fully characterized by means of infrared and nuclear magnetic resonance spectroscopy. Results show formation of Ti-monobutylcarbonate, that easily undergoes nucleophilic attack by an aliphatic amine. The hydrolysis of the resulting species produces butylcarbamate and dibutylcarbonate as the only main products. Characterization results of the carbonate-like adduct, along with its reactivity with amine molecules open the route to new ways of CO2 utilization as building block for valuable organic compounds.