Search results for "Almost everywhere"
showing 10 items of 28 documents
Rearrangement and convergence in spaces of measurable functions
2007
We prove that the convergence of a sequence of functions in the space of measurable functions, with respect to the topology of convergence in measure, implies the convergence -almost everywhere ( denotes the Lebesgue measure) of the sequence of rearrangements. We obtain nonexpansivity of rearrangement on the space , and also on Orlicz spaces with respect to a finitely additive extended real-valued set function. In the space and in the space , of finite elements of an Orlicz space of a -additive set function, we introduce some parameters which estimate the Hausdorff measure of noncompactness. We obtain some relations involving these parameters when passing from a bounded set of , or , to th…
An example concerning the zero set of the Jacobian
2006
AbstractLet f∈W1,1(Ω,Rn) be a homeomorphism of finite distortion K. It is known that if K1/(n−1)∈L1(Ω), then the Jacobian Jf of f is positive almost everywhere in Ω. We will show that this integrability assumption on K is sharp in any Orlicz-scale: if α is increasing function (satisfying minor technical assumptions) such that limt→∞α(t)=∞, then there exists f such that K1/(n−1)/α(K)∈L1(Ω) and Jf vanishes in a set of positive measure.
A note on Sobolev isometric immersions below W2,2 regularity
2017
Abstract This paper aims to investigate the Hessian of second order Sobolev isometric immersions below the natural W 2 , 2 setting. We show that the Hessian of each coordinate function of a W 2 , p , p 2 , isometric immersion satisfies a low rank property in the almost everywhere sense, in particular, its Gaussian curvature vanishes almost everywhere. Meanwhile, we provide an example of a W 2 , p , p 2 , isometric immersion from a bounded domain of R 2 into R 3 that has multiple singularities.
Approximation by mappings with singular Hessian minors
2018
Let $\Omega\subset\mathbb R^n$ be a Lipschitz domain. Given $1\leq p<k\leq n$ and any $u\in W^{2,p}(\Omega)$ belonging to the little H\"older class $c^{1,\alpha}$, we construct a sequence $u_j$ in the same space with $\operatorname{rank}D^2u_j<k$ almost everywhere such that $u_j\to u$ in $C^{1,\alpha}$ and weakly in $W^{2,p}$. This result is in strong contrast with known regularity behavior of functions in $W^{2,p}$, $p\geq k$, satisfying the same rank inequality.
On functions with derivatives in a Lorentz space
1999
We establish a sharp integrability condition on the partial derivatives of a Sobolev mapping to guarantee that sets of measure zero get mapped to sets of measure zero. This condition is sharp also for continuity and differentiability almost everywhere.
On the Uniqueness of the Energy and Momenta of an Asymptotically Minkowskian Space-Time: The Case of the Schwarzschild Metric
2013
Some theorems about the uniqueness of the energy of asymptotically Minkowskian spaces are recalled. The suitability of almost everywhere Gauss coordinates to define some kind of physical energy in these spaces is commented. Schwarzschild metric, when its source radius is larger than the Schwarzschild radius and in the case of a black hole, is considered. In both cases, by using a specific almost everywhere Gaussian coordinate system, a vanishing energy results. We explain why this result is not in contradiction with the quoted theorems. Finally we conclude that this metric is a particular case of what we have called elsewhere a creatable universe.
Local conical dimensions for measures
2012
AbstractWe study the decay of μ(B(x,r)∩C)/μ(B(x,r)) asr↓ 0 for different kinds of measures μ on ℝnand various conesCaroundx. As an application, we provide sufficient conditions that imply that the local dimensions can be calculated via cones almost everywhere.
VARIANTS OF A SELECTION PRINCIPLE FOR SEQUENCES OF REGULATED AND NON-REGULATED FUNCTIONS
2008
Let $T$ be a nonempty subset of $\RB$, $X$ a metric space with metric $d$ and $X^T$ the set of all functions mapping $T$ into $X$. Given $\vep>0$ and $f\in X^T$, we denote by $N(\vep,f,T)$ the least upper bound of those $n\in\NB$, for which there exist numbers $s_1,\dots,s_n,t_1,\dots,t_n$ from $T$ such that $s_1\vep$ for all $i=1,\dots,n$ ($N(\vep,f,T)=0$ if there are no such $n$'s). The following pointwise selection principle is proved: {\em If a sequence of functions\/ $\{f_j\}_{j=1}^\infty\subset X^T$ is such that the closure in $X$ of the sequence\/ $\{f_j(t)\}_{j=1}^\infty$ is compact for each $t\in T$ and\/ $\limsup_{j\to\infty}N(\vep,f_j,T)0$, then\/ $\{f_j\}_{j=1}^\infty$ contains …
Absolutely continuous functions in Rn
2005
Abstract For each 0 α 1 we consider a natural n-dimensional extension of the classical notion of absolute continuous function. We compare it with the Malý's and Hencl's definitions. It follows that each α-absolute continuous function is continuous, weak differentiable with gradient in L n , differentiable almost everywhere and satisfies the formula on change of variables.
Fine properties of functions with bounded variation in Carnot-Carathéodory spaces
2019
Abstract We study properties of functions with bounded variation in Carnot-Caratheodory spaces. We prove their almost everywhere approximate differentiability and we examine their approximate discontinuity set and the decomposition of their distributional derivatives. Under an additional assumption on the space, called property R , we show that almost all approximate discontinuities are of jump type and we study a representation formula for the jump part of the derivative.