Search results for "Alpha particle"
showing 10 items of 63 documents
Clusterization and strong coupled-channels effects in deuteron interaction with $^9$Be nuclei
2019
Angular distributions of protons, deuterons, tritons and alpha particles emitted in the d + alt;supagt;9alt;/supagt;Be reaction at Ealt;subagt;labalt;/subagt;=19.5 and 35.0 MeV have been measured.a#13; The elastic scattering channel is analysed in the framework of both the Optical Model and the Coupled-Channel approach. a#13; The interaction potential of the alt;iagt;dalt;/iagt; + alt;supagt;9alt;/supagt;Be system is calculated in the framework of the Double-Folding model using the α+α+alt;iagt;nalt;/iagt; three-body wave function of the alt;supagt;9alt;/supagt;Be nucleus.a#13; The (alt;iagt;dalt;/iagt;,alt;iagt;palt;/iagt;) and (alt;iagt;dalt;/iagt;,alt;iagt;talt;/iagt;) one-nucleon-transf…
Risk of Lung Cancer Mortality in Nuclear Workers from Internal Exposure to Alpha Particle-emitting Radionuclides
2017
Supplemental Digital Content is available in the text.
Nickel on Mars: Constraints on meteoritic material at the surface
2006
[1] Impact craters and the discovery of meteorites on Mars indicate clearly that there is meteoritic material at the Martian surface. The Alpha Particle X-ray Spectrometers (APXS) on board the Mars Exploration Rovers measure the elemental chemistry of Martian samples, enabling an assessment of the magnitude of the meteoritic contribution. Nickel, an element that is greatly enhanced in meteoritic material relative to samples of the Martian crust, is directly detected by the APXS and is observed to be geochemically mobile at the Martian surface. Correlations between nickel and other measured elements are used to constrain the quantity of meteoritic material present in Martian soil and sedimen…
The new Athena alpha particle X-ray spectrometer for the Mars Exploration Rovers
2003
[1] The new alpha particle X-ray spectrometer (APXS) is part of the Athena payload of the two Mars Exploration Rovers (MER). The APXS sensor head is attached to the turret of the instrument deployment device (IDD) of the rover. The APXS is a very light-weight instrument for determining the major and minor elemental composition of Martian soils, rocks, and other geological materials at the MER landing sites. The sensor head has simply to be docked by the IDD on the surface of the selected sample. X-ray radiation, excited by alpha particles and X rays of the radioactive sources, is recorded by a high-resolution X-ray detector. The X-ray spectra show elements starting from sodium up to yttrium…
Production of zero energy radioactive beams through extraction across superfluid helium surface
2003
A radioactive Ra-223 source was immersed in superfluid helium at 1.2-1.7 K. Electric fields transported recoiled Rn-219 ions in the form of snowballs to the surface and further extracted them across the surface. The ions were focussed onto an aluminium foil and alpha particle spectra were taken with a surface barrier spectrometer. This enabled us to determine the efficiency for each process unambiguously. The pulsed second sound wave proved effective in enhancing the extraction of positive ions from the surface. Thus we offer a novel method for study of impurities in superfluid helium and propose this method for production of zero energy nuclear beams for use at radioactive ion beam facilit…
Alpha Particle X-Ray Spectrometer (APXS): Results from Gusev crater and calibration report
2006
The chemical composition of rocks and soils on Mars analyzed during the Mars Exploration Rover Spirit Mission was determined by X-ray analyses with the Alpha Particle X-Ray Spectrometer (APXS). Details of the data analysis method and the instrument calibration are presented. Measurements performed on Mars to address geometry effects and background contributions are shown. Cross calibration measurements among several instrument sensors and sources are discussed. An unintentional swap of the two flight instruments is evaluated. New concentration data acquired during the first 470 sols of rover Spirit in Gusev Crater are presented. There are two geological regions, the Gusev plains and the Col…
Criteria for the Discovery of Chemical Elements
1976
The availability of suitable heavy-ion accelerators should make it possible to synthesize and identify additional heavy transuranium elements. Criteria for adequate proof that a new element has been synthesized or found in nature and identified are suggested. The basic criterion must be the proof that the atomic number of the new element is different from the atomic numbers of all previously known elements. Chemical identification constitutes an ideal proof; the procedure must be valid for application to individual atoms in an unequivocal manner. Also satisfactory is the identification of characteristic x rays in connection with the decay of the isotope of the new element. This is likely to…
Theory of the Lamb Shift and fine structure in muonic 4He ions and the muonic 3He– 4He Isotope Shift
2018
Abstract We provide an up to date summary of the theory contributions to the 2S → 2P Lamb shift and the fine structure of the 2P state in the muonic helium ion ( μ 4 He ) + . This summary serves as the basis for the extraction of the alpha particle charge radius from the muonic helium Lamb shift measurements at the Paul Scherrer Institute, Switzerland. Individual theory contributions needed for a charge radius extraction are compared and compiled into a consistent summary. The influence of the alpha particle charge distribution on the elastic two-photon exchange is studied to take into account possible model-dependencies of the energy levels on the electric form factor of the nucleus. We al…
Effects of high-energy electrons in advanced NAND flash memories
2016
We study the effects of high-energy electrons on advanced NAND Flash memories with multi-level and single-level cell architecture. We analyze the error rate in floating gate cells as a function of electron energy, evaluate the impact of total ionizing dose, and discuss the physical origin of the observed behavior.
Detector-electrode for alpha spectrometry in water sample, numerical and early feasibility investigation toward thermocompression bonding assembly pr…
2020
International audience; This study focuses on the feasibility of a detector-electrode for direct alpha measurement in aqueous samples. Such a device could be made by adding a boron doped diamond electrode on top of a standard silicon detector, with bonding and insulating layers. The impact of these different layers has been investigated by Monte-Carlo simulation (MCNP6), to find a compromise between alpha detection of the silicon, electrode and shielding properties of the diamond. The assembly process involving thermocompression between both substrates was successfully achieved under a clean room conditions.