Search results for "Amy"

showing 10 items of 1486 documents

Induction of dormancy in hypoxic human papillomavirus-positive cancer cells

2017

Oncogenic human papillomaviruses (HPVs) are closely linked to major human malignancies, including cervical and head and neck cancers. It is widely assumed that HPV-positive cancer cells are under selection pressure to continuously express the viral E6/E7 oncogenes, that their intracellular p53 levels are reconstituted on E6/E7 repression, and that E6/E7 inhibition phenotypically results in cellular senescence. Here we show that hypoxic conditions, as are often found in subregions of cervical and head and neck cancers, enable HPV-positive cancer cells to escape from these regulatory principles: E6/E7 is efficiently repressed, yet, p53 levels do not increase. Moreover, E6/E7 repression under …

0301 basic medicineSenescenceCell signalingMultidisciplinaryBiology03 medical and health sciences030104 developmental biology0302 clinical medicineCell culturePapillomavirus E7 Proteins030220 oncology & carcinogenesisCancer cellImmunologybiology.proteinCancer researchPsychological repressionMechanistic target of rapamycinPI3K/AKT/mTOR pathwayProceedings of the National Academy of Sciences
researchProduct

Human Intrinsic Factor Expression for Bioavailable Vitamin B12 Enrichment in Microalgae

2018

Dietary supplements and functional foods are becoming increasingly popular complements to regular diets. A recurring ingredient is the essential cofactor vitamin B12(B12). Microalgae are making their way into the dietary supplement and functional food market but do not produce B12, and their B12 content is very variable. In this study, the suitability of using the human B12-binding protein intrinsic factor (IF) to enrich bioavailable B12 using microalgae was tested. The IF protein was successfully expressed from the nuclear genome of the model microalga Chlamydomonas reinhardtii and the addition of an N-terminal ARS2 signal peptide resulted in efficient IF secretion to the medium. Co-abunda…

0301 basic medicineSignal peptide<i>Chlamydomonas</i>; vitamin B<sub>12</sub>; cobalamin; intrinsic factor; microalgae; nuclear transformation; recombinant protein; dietary supplements; functional foodsChlamydomonaChlamydomonas reinhardtiiArticleGeneral Biochemistry Genetics and Molecular Biologydietary supplements03 medical and health sciencesIngredientnuclear transformationFunctional foodpolycyclic compoundsVitamin B12Food sciencecobalaminlcsh:QH301-705.5functional foodsIntrinsic factorGeneral Immunology and MicrobiologybiologymicroalgaeChlamydomonasChlamydomonasnutritional and metabolic diseasesvitamin B12biology.organism_classificationBioavailability030104 developmental biologylcsh:Biology (General)dietary supplementintrinsic factorGeneral Agricultural and Biological Sciencesrecombinant proteinBiology; Volume 7; Issue 1; Pages: 19
researchProduct

Regulatory effects of simvastatin and apoJ on APP processing and amyloid-beta clearance in blood-brain barrier endothelial cells

2017

Amyloid-β peptides (Aβ) accumulate in cerebral capillaries indicating a central role of the blood-brain barrier (BBB) in the pathogenesis of Alzheimer’s disease (AD). Although a relationship between apolipoprotein-, cholesterol- and Aβ metabolism is evident, the interconnecting mechanisms operating in brain capillary endothelial cells (BCEC) are poorly understood. ApoJ (clusterin) is present in HDL that regulates cholesterol metabolism which is disturbed in AD. ApoJ levels are increased in AD brains and in plasma of cerebral amyloid angiopathy (CAA) patients. ApoJ may bind, prevent fibrillization, and enhance clearance of Aβ. We here define a connection of apoJ and cellular cholesterol home…

0301 basic medicineSimvastatinmedicine.medical_specialtyAmyloidSwineMice TransgenicBiologyBlood–brain barrierAmyloid beta-Protein PrecursorMice03 medical and health sciences0302 clinical medicineInternal medicinemedicineAmyloid precursor proteinAnimalsMolecular BiologyCells CulturedAmyloid beta-PeptidesClusterinEndothelial CellsCell Biologymedicine.diseaseLRP1Peptide FragmentsMice Inbred C57BLClusterin030104 developmental biologyEndocrinologymedicine.anatomical_structureBlood-Brain Barrierbiology.proteinFemaleCerebral amyloid angiopathyblood-brain barrier ; amyloid-β ; cholesterol ; simvastatin ; clusterin/apoJ ; LRP1Protein Processing Post-Translational030217 neurology & neurosurgeryIntracellularLipoprotein
researchProduct

Pressure effects on α-synuclein amyloid fibrils: An experimental investigation on their dissociation and reversible nature

2017

α–synuclein amyloid fibrils are found in surviving neurons of Parkinson's disease affected patients, but the role they play in the disease development is still under debate. A growing number of evidences points to soluble oligomers as the major cytotoxic species, while insoluble fibrillar aggregates could even play a protection role. In this work, we investigate α–synuclein fibrils dissociation induced at high pressure by means of Small Angle X-ray Scattering and Fourier Transform Infrared Spectroscopy. Fibrils were produced from wild type α–synuclein and two familial mutants, A30P and A53T. Our results enlighten the different reversible nature of α–synuclein fibrils fragmentati…

0301 basic medicineSmall AngleAmyloidHigh-pressureMutantBiophysicsmacromolecular substances010402 general chemistryFibril01 natural sciencesBiochemistryDissociation (chemistry)Scattering03 medical and health scienceschemistry.chemical_compoundX-Ray DiffractionScattering Small AngleSpectroscopy Fourier Transform InfraredPressureHumansPoint MutationFourier transform infrared spectroscopyMolecular BiologySpectroscopyAlpha-synucleinAmyloid; FTIR; High-pressure; SAXS; α-synuclein; Amyloid; Humans; Parkinson Disease; Point Mutation; Pressure; Scattering Small Angle; Solubility; Spectroscopy Fourier Transform Infrared; X-Ray Diffraction; alpha-Synuclein; Biophysics; Biochemistry; Molecular BiologySmall-angle X-ray scatteringWild typeα-synucleinParkinson DiseaseSAXSAmyloid fibril0104 chemical sciences?-synucleinCrystallography030104 developmental biologyBiophysicchemistryFTIRSolubilityFourier Transform InfraredBiophysicsalpha-SynucleinHuman
researchProduct

A Shotgun Proteomics Approach Reveals a New Toxic Role for Alzheimer's Disease Aβ Peptide: Spliceosome Impairment.

2017

Proteomic changes have been described in many neurodegenerative diseases, including Alzheimer's disease (AD). However, the early events in the onset of the pathology are yet to be fully elucidated. A cell model system in which LAN5 neuroblastoma cells were incubated for a short time with a recombinant form of Aβ42 was utilized. Proteins extracted from these cells were subjected to shotgun proteomics analysis by LTQ-Orbitrap-MS followed by label-free quantitation. By bioinformatics tools we found that the most significant of those found to be up-regulated were related to cytoskeletal dynamics (Rho related) and membrane-related processes. The most significant of the down-regulated proteins we…

0301 basic medicineSpliceosomeAmyloid beta-PeptideProteomeComputational biologyDiseaseBiologyBiochemistrylaw.inventionearly events in AD03 medical and health sciencesNeuroblastoma0302 clinical medicinelawAlzheimer DiseaseCell Line TumorHumansShotgun proteomicsCytoskeletonCytoskeletonGeneticsAmyloid beta-PeptidesChemistry (all)Cell MembraneGeneral ChemistryRibosomal RNAAlzheimer's diseaseRecombinant Proteinshotgun proteomicRecombinant Proteins030104 developmental biologySpliceosomeGene Expression RegulationRNA splicingRecombinant DNASpliceosomes030217 neurology & neurosurgeryBiogenesisHumanJournal of proteome research
researchProduct

Metal Ions and Metal Complexes in Alzheimer's Disease.

2015

Background: Alzheimer’s disease (AD) is the most common form of dementia that seriously affects daily life. Even if AD pathogenesis is still subject of debate, it is generally accepted that cerebral cortex plaques formed by aggregated amyloid-β (Aβ) peptides can be considered a characteristic pathological hallmark. It is well known that metal ions play an important role in the aggregation process of Aβ. Methods: This review focuses on the anti-Aβ aggregation activity of chelating ligands as well as on the use of metal complexes as diagnostic probes and as potential drugs. Conclusion: While chelating agents, such as curcumin or flavonoid derivatives, are currently used to capture metal ions …

0301 basic medicineStereochemistryMetal ions in aqueous solutionchemistry.chemical_elementProtein aggregationImagingPathogenesis03 medical and health scienceschemistry.chemical_compoundProtein AggregatesAlzheimer DiseaseCoordination ComplexesMetals HeavyDrug DiscoveryAD drugmedicineDementiaAnimalsHumansChelationMetal ionPharmacologyAmyloid beta-PeptidesDrug Discovery3003 Pharmaceutical ScienceAnti-aβ aggregating agentmedicine.diseaseCombinatorial chemistryRuthenium030104 developmental biologychemistrySettore CHIM/03 - Chimica Generale E InorganicaCurcuminMetal complexeAlzheimer's diseaseAlzheimer’s diseaseCurrent pharmaceutical design
researchProduct

Structure and Synaptic Function of Metal Binding to the Amyloid Precursor Protein and its Proteolytic Fragments

2017

Alzheimer’s disease (AD) is ultimately linked to the Amyloid Precursor Protein (APP). However, current research reveals an important synaptic function of APP and APP-like proteins (APLP1 and 2). In this context various neurotrophic and neuroprotective functions have been reported for the APP proteolytic fragments sAPPα, sAPPβ, and the monomeric amyloid-beta peptide (Aβ). APP is a metalloprotein and binds copper and zinc ions. Synaptic activity correlates with a release of these ions into the synaptic cleft and dysregulation of their homeostasis is linked to different neurodegenerative diseases. Metal binding to APP or its fragments affects its structure and its proteolytic cleavage and ther…

0301 basic medicineSynaptic cleftamyloid precursor protein (APP)Context (language use)ReviewNeurotransmission03 medical and health sciencesCellular and Molecular Neurosciencemental disordersAmyloid precursor proteinsynaptic transmissionAPLP1Molecular BiologybiologyChemistryzincP3 peptideCell biologyBiochemistry of Alzheimer's disease030104 developmental biologyAlpha secretaseBiochemistrycopperbiology.proteinAlzheimer’s diseaseNeuroscienceFrontiers in Molecular Neuroscience
researchProduct

2018

The origin of spontaneous preference for dietary lipids in humans and rodents is debated, though recent compelling evidence has shown the existence of fat taste that might be considered a sixth taste quality. We investigated the implication of gustatory and reward brain circuits, triggered by linoleic acid (LA), a long-chain fatty acid. The LA was applied onto the circumvallate papillae for 30 min in conscious C57BL/6J mice, and neuronal activation was assessed using c-Fos immunohistochemistry. By using real-time reverse transcription polymerase chain reaction (RT-qPCR), we also studied the expression of mRNA encoding brain-derived neurotrophic factor (BDNF), Zif-268, and Glut-1 in some bra…

0301 basic medicineTasteNutrition and DieteticsArc (protein)biologyThalamusSolitary tractHippocampusc-FosAmygdalaVentral tegmental area03 medical and health sciences030104 developmental biology0302 clinical medicinemedicine.anatomical_structuremedicinebiology.proteinNeuroscience030217 neurology & neurosurgeryFood ScienceNutrients
researchProduct

Yeast thioredoxin reductase Trr1p controls TORC1-regulated processes

2018

The thioredoxin system plays a predominant role in the control of cellular redox status. Thioredoxin reductase fuels the system with reducing power in the form of NADPH. The TORC1 complex promotes growth and protein synthesis when nutrients, particularly amino acids, are abundant. It also represses catabolic processes, like autophagy, which are activated during starvation. We analyzed the impact of yeast cytosolic thioredoxin reductase TRR1 deletion under different environmental conditions. It shortens chronological life span and reduces growth in grape juice fermentation. TRR1 deletion has a global impact on metabolism during fermentation. As expected, it reduces oxidative stress tolerance…

0301 basic medicineThioredoxin Reductase 1Estrès oxidatiuThioredoxin reductaseScienceMicrobiologiaMechanistic Target of Rapamycin Complex 1Grape Juice FermentationArticleAntioxidants03 medical and health scienceschemistry.chemical_compoundTORC1 PathwayYeastsAmino AcidsMultidisciplinary030102 biochemistry & molecular biologyKinaseAutophagyChronological Life SpanQFungal geneticsRGlutathioneMetabolismTORC1 ComplexThioredoxin SystemYeastCell biology030104 developmental biologychemistryMedicineThioredoxinGene DeletionSignal TransductionScientific Reports
researchProduct

Neural oscillations in the infralimbic cortex after electrical stimulation of the amygdala. Relevance to acute stress processing

2017

The stress system coordinates the adaptive reactions of the organism to stressors. Therefore, dysfunctions in this circuit may correlate to anxiety-related disorders, including depression. Comprehending the dynamics of this network may lead to a better understanding of the mechanisms that underlie these diseases. The central nucleus of the amygdala (CeA) activates the hypothalamic–pituitary–adrenal axis and brainstem nodes by triggering endocrine, autonomic and behavioral stress responses. The medial prefrontal cortex plays a significant role in regulating reactions to stressors, and is specifically important for limiting fear responses. Brain oscillations reflect neural systems activity. S…

0301 basic medicineTime FactorsInfralimbic cortexLocal field potentialBiologyAmygdalaRats Sprague-Dawley03 medical and health sciences0302 clinical medicinemedicineAnimalsPrefrontal cortexEvoked PotentialsCerebral CortexNeuronsAfferent PathwaysGeneral NeuroscienceCentral nucleus of the amygdalaAmygdalaElectric StimulationRatsElectrophysiology030104 developmental biologymedicine.anatomical_structureSynaptic plasticityFemaleBrainstemNeuroscience030217 neurology & neurosurgery
researchProduct