Search results for "Analisi Matematica"

showing 10 items of 811 documents

Optimal maps and exponentiation on finite dimensional spaces with Ricci curvature bounded from below

2013

We prove existence and uniqueness of optimal maps on $RCD^*(K,N)$ spaces under the assumption that the starting measure is absolutely continuous. We also discuss how this result naturally leads to the notion of exponentiation.

Mathematics - Differential GeometryExponentiationLower Ricci bounds; Optimal maps; Optimal transport; RCD spaces01 natural sciencesMeasure (mathematics)Combinatoricssymbols.namesakeMathematics - Metric GeometryRCD spacesSettore MAT/05 - Analisi MatematicaFOS: MathematicsOptimal transportMathematics::Metric GeometryUniqueness0101 mathematicsLower Ricci bounds[MATH.MATH-MG]Mathematics [math]/Metric Geometry [math.MG]Ricci curvatureMathematicsDiscrete mathematics010102 general mathematicsMetric Geometry (math.MG)Absolute continuity16. Peace & justice010101 applied mathematicsMathematics::LogicDifferential geometryDifferential Geometry (math.DG)Fourier analysisBounded functionsymbolsOptimal mapsGeometry and Topology
researchProduct

Rigidity and sharp stability estimates for hypersurfaces with constant and almost-constant nonlocal mean curvature

2018

We prove that the boundary of a (not necessarily connected) bounded smooth set with constant nonlocal mean curvature is a sphere. More generally, and in contrast with what happens in the classical case, we show that the Lipschitz constant of the nonlocal mean curvature of such a boundary controls its $C^2$-distance from a single sphere. The corresponding stability inequality is obtained with a sharp decay rate.

Mathematics - Differential GeometryMean curvatureApplied MathematicsGeneral Mathematics010102 general mathematicsMathematical analysis01 natural sciencesStability (probability)010101 applied mathematicsMathematics - Analysis of PDEsRigidity (electromagnetism)Differential Geometry (math.DG)Alexandrov Theorem Stability Nonlocal mean curvature fractional perimeterSettore MAT/05 - Analisi MatematicaFOS: MathematicsMathematics (all)0101 mathematicsConstant (mathematics)Mathematics (all); Applied MathematicsAnalysis of PDEs (math.AP)MathematicsJournal für die reine und angewandte Mathematik (Crelles Journal)
researchProduct

A rigidity problem on the round sphere

2015

We consider a class of overdetermined problems in rotationally symmetric spaces, which reduce to the classical Serrin's overdetermined problem in the case of the Euclidean space. We prove some general integral identities for rotationally symmetric spaces which imply a rigidity result in the case of the round sphere.

Mathematics - Differential GeometryPure mathematicsEuclidean spaceApplied MathematicsGeneral Mathematics010102 general mathematicsMathematics::Analysis of PDEsComputer Science::Numerical Analysis01 natural sciencesOverdetermined systemrotationally symmetric spaceMathematics - Analysis of PDEsRigidity (electromagnetism)rigidityDifferential Geometry (math.DG)Settore MAT/05 - Analisi Matematica0103 physical sciencesRound sphereFOS: MathematicsPrimary 35R01 35N25 Secondary: 53C24 58J05Overdetermined PDE010307 mathematical physics0101 mathematicsAnalysis of PDEs (math.AP)Mathematics
researchProduct

A sharp quantitative version of Alexandrov's theorem via the method of moving planes

2015

We prove the following quantitative version of the celebrated Soap Bubble Theorem of Alexandrov. Let $S$ be a $C^2$ closed embedded hypersurface of $\mathbb{R}^{n+1}$, $n\geq1$, and denote by $osc(H)$ the oscillation of its mean curvature. We prove that there exists a positive $\varepsilon$, depending on $n$ and upper bounds on the area and the $C^2$-regularity of $S$, such that if $osc(H) \leq \varepsilon$ then there exist two concentric balls $B_{r_i}$ and $B_{r_e}$ such that $S \subset \overline{B}_{r_e} \setminus B_{r_i}$ and $r_e -r_i \leq C \, osc(H)$, with $C$ depending only on $n$ and upper bounds on the surface area of $S$ and the $C^2$ regularity of $S$. Our approach is based on a…

Mathematics - Differential GeometrySoap bubbleMean curvatureOscillationApplied MathematicsGeneral Mathematics010102 general mathematicsConcentricSurface (topology)53C20 53C21 (Primary) 35B50 35B51 (Secondary)01 natural sciencesAlexandrov Soap Bubble Theorem method of moving planes stability mean curvature pinching.CombinatoricsHypersurfaceMathematics - Analysis of PDEsDifferential Geometry (math.DG)Settore MAT/05 - Analisi Matematica0103 physical sciencesFOS: Mathematics010307 mathematical physicsDiffeomorphism0101 mathematicsMathematicsAnalysis of PDEs (math.AP)
researchProduct

The method of moving planes: a quantitative approach

2018

We review classical results where the method of the moving planes has been used to prove symmetry properties for overdetermined PDE's boundary value problems (such as Serrin's overdetermined problem) and for rigidity problems in geometric analysis (like Alexandrov soap bubble Theorem), and we give an overview of some recent results related to quantitative studies of the method of moving planes, where quantitative approximate symmetry results are obtained.

Mathematics - Differential Geometryoverdetermined problem010102 general mathematicsmean curvaturelcsh:QA299.6-43335N25; 35B35; 53A10; 53C24; 35B50; 35B51; 35J70alexandrov soap bubble theoremlcsh:Analysisstability01 natural sciencesAlexandrov Soap Bubble Theorem; overdetermined problems; rigidity; stability; mean curvature; moving planesMathematics - Analysis of PDEsrigidityDifferential Geometry (math.DG)Settore MAT/05 - Analisi Matematicaoverdetermined problemsFOS: Mathematics0101 mathematicsmoving planesAnalysis of PDEs (math.AP)
researchProduct

Convergence for varying measures in the topological case

2023

In this paper convergence theorems for sequences of scalar, vector and multivalued Pettis integrable functions on a topological measure space are proved for varying measures vaguely convergent.

Mathematics - Functional Analysis28B05Primary 28B20 Secondary 26E25 26A39 28B05 46G10 54C60 54C6526A39setwise convergence vaguely convergence weak convergence of measures locally compact Hausdorff space Vitali's TheoremSettore MAT/05 - Analisi Matematica54C60FOS: MathematicsPrimary 28B20Secondary 26E2554C65Functional Analysis (math.FA)46G10
researchProduct

Some perturbation results for quasi-bases and other sequences of vectors

2023

We discuss some perturbation results concerning certain pairs of sequences of vectors in a Hilbert space $\Hil$ and producing new sequences which share, with the original ones, { reconstruction formulas on a dense subspace of $\Hil$ or on the whole space}. We also propose some preliminary results on the same issue, but in a distributional settings.

Mathematics - Functional Analysisperturbationsquasi-baseSettore MAT/05 - Analisi MatematicaFOS: MathematicsFOS: Physical sciencesStatistical and Nonlinear PhysicsMathematical Physics (math-ph)Settore MAT/07 - Fisica MatematicaMathematical PhysicsFunctional Analysis (math.FA)
researchProduct

Superlinear (p(z), q(z))-equations

2017

AbstractWe consider Dirichlet boundary value problems for equations involving the (p(z), q(z))-Laplacian operator in the principal part and prove the existence of one and three nontrivial weak solutions, respectively. Here, the nonlinearity in the reaction term is allowed to depend on the solution, but does not satisfy the Ambrosetti–Rabinowitz condition. The hypotheses on the reaction term ensure that the Euler–Lagrange functional, associated to the problem, satisfies both the -condition and a mountain pass geometry.

Mathematics::Analysis of PDEs01 natural sciencesDirichlet distributionsymbols.namesakeSettore MAT/05 - Analisi MatematicaBoundary value problemMountain pass0101 mathematicsMathematicsNumerical Analysisgeographygeography.geographical_feature_category (p(z)q(z))-Laplacian operatorApplied MathematicsWeak solutionOperator (physics)010102 general mathematicsMathematical analysisweak solutionTerm (time)010101 applied mathematicsComputational MathematicsNonlinear system(Cc)-condition(p(z)critical groupsymbolsnonlinear regularityPrincipal partAnalysisComplex Variables and Elliptic Equations
researchProduct

A symmetrization result for Monge–Ampère type equations

2007

In this paper we prove some comparison results for Monge–Ampere type equations in dimension two. We also consider the case of eigenfunctions and we derive a kind of “reverse” inequalities. (© 2007 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim)

Mathematics::Complex VariablesGeneral MathematicsMathematical analysisComparison resultsMonge-Ampère equationEigenfunctionType (model theory)Monge-Ampère equationsDimension (vector space)Settore MAT/05 - Analisi Matematicaeigenvalue problemrearrangementsSymmetrizationAmpereEigenvalue problemsMathematicsMathematische Nachrichten
researchProduct

Integration of multifunctions with closed convex values in arbitrary Banach spaces

2018

Integral properties of multifunctions with closed convex values are studied. In this more general framework not all the tools and the technique used for weakly compact convex valued multifunctions work. We pay particular attention to the "positive multifunctions". Among them an investigation of multifunctions determined by vector-valued functions is presented. Finally, decomposition results are obtained for scalarly and gauge-defined integrals of multifunctions and a full description of McShane integrability in terms of Henstock and Pettis integrability is given.

Mathematics::Functional AnalysisPositive multifunctionPhysics::Medical PhysicsMathematics::Optimization and ControlselectionPositive multifunction gauge integral decomposition theorem for multifunctionselection measure theoryComputer Science::OtherFunctional Analysis (math.FA)Mathematics - Functional Analysismeasure theorySettore MAT/05 - Analisi Matematicagauge integralFOS: Mathematicsdecomposition theorem for multifunction28B20 26E25 26A39 28B0 46G10 54C60 54C65
researchProduct