Search results for "Artificial intelligence"

showing 10 items of 6122 documents

Static and Dynamic Objects Analysis as a 3D Vector Field

2017

International audience; In the context of scene modelling, understanding, and landmark-based robot navigation, the knowledge of static scene parts and moving objects with their motion behaviours plays a vital role. We present a complete framework to detect and extract the moving objects to reconstruct a high quality static map. For a moving 3D camera setup, we propose a novel 3D Flow Field Analysis approach which accurately detects the moving objects using only 3D point cloud information. Further, we introduce a Sparse Flow Clustering approach to effectively and robustly group the motion flow vectors. Experiments show that the proposed Flow Field Analysis algorithm and Sparse Flow Clusterin…

0209 industrial biotechnologyComputer sciencebusiness.industry[INFO.INFO-RB] Computer Science [cs]/Robotics [cs.RO][ INFO.INFO-RB ] Computer Science [cs]/Robotics [cs.RO]ComputingMethodologies_IMAGEPROCESSINGANDCOMPUTERVISIONPoint cloud[INFO.INFO-CV]Computer Science [cs]/Computer Vision and Pattern Recognition [cs.CV]Context (language use)Motion detection02 engineering and technology[ INFO.INFO-CV ] Computer Science [cs]/Computer Vision and Pattern Recognition [cs.CV][INFO.INFO-CV] Computer Science [cs]/Computer Vision and Pattern Recognition [cs.CV]020901 industrial engineering & automationFlow (mathematics)Motion estimation0202 electrical engineering electronic engineering information engineering[INFO.INFO-RB]Computer Science [cs]/Robotics [cs.RO]020201 artificial intelligence & image processingSegmentationComputer visionArtificial intelligenceCluster analysisbusinessEuclidean vector2017 International Conference on 3D Vision (3DV)
researchProduct

Homography based egomotion estimation with a common direction

2017

International audience; In this paper, we explore the different minimal solutions for egomotion estimation of a camera based on homography knowing the gravity vector between calibrated images. These solutions depend on the prior knowledge about the reference plane used by the homography. We then demonstrate that the number of matched points can vary from two to three and that a direct closed-form solution or a Gröbner basis based solution can be derived according to this plane. Many experimental results on synthetic and real sequences in indoor and outdoor environments show the efficiency and the robustness of our approach compared to standard methods.

0209 industrial biotechnologyComputingMethodologies_IMAGEPROCESSINGANDCOMPUTERVISIONHomography02 engineering and technology[ INFO.INFO-CV ] Computer Science [cs]/Computer Vision and Pattern Recognition [cs.CV]homography estimationGröbner basis020901 industrial engineering & automationArtificial IntelligenceRobustness (computer science)0202 electrical engineering electronic engineering information engineeringStructure from motion[INFO.INFO-RB]Computer Science [cs]/Robotics [cs.RO]Computer visionComputingMilieux_MISCELLANEOUSstructure-from-motionMathematicsegomotion estimationPhotogrammetrie und Bildanalysebusiness.industryApplied Mathematics[ INFO.INFO-RB ] Computer Science [cs]/Robotics [cs.RO][INFO.INFO-CV]Computer Science [cs]/Computer Vision and Pattern Recognition [cs.CV]Standard methodsReference planeComputational Theory and Mathematics020201 artificial intelligence & image processingComputer Vision and Pattern RecognitionArtificial intelligencebusinessSoftwareIndex Terms—Computer vision
researchProduct

Robust adaptive tracking control of uncertain systems with time-varying input delays

2017

ABSTRACTIn this paper, the problem of robust adaptive tracking control of uncertain systems with time-varying input delays is studied. Under some mild assumptions, a robust adaptive controller is designed by using adaptive backstepping technique such that the system is globally stable and the system output can track a given reference signal. At the same time, a root mean square type of bound is obtained for the tracking error as a function of design parameters and thus can be adjusted. Finally, one numerical example is given to show the effectiveness of the proposed scheme.

0209 industrial biotechnologyControl and OptimizationAdaptive controlComputer scienceControl (management)Uncertain systems02 engineering and technologyFunction (mathematics)SignalComputer Science ApplicationsTheoretical Computer ScienceHuman-Computer InteractionTracking errorRoot mean square020901 industrial engineering & automationControl and Systems EngineeringControl theoryBackstepping0202 electrical engineering electronic engineering information engineering020201 artificial intelligence & image processingElectrical and Electronic EngineeringAdaptive trackingRobust controlInternational Journal of Systems Science
researchProduct

Adaptive Control of Soft Robots Based on an Enhanced 3D Augmented Rigid Robot Matching

2021

Despite having proven successful in generating precise motions under dynamic conditions in highly deformable soft-bodied robots, model based techniques are also prone to robustness issues connected to the intrinsic uncertain nature of the dynamics of these systems. This letter aims at tackling this challenge, by extending the augmented rigid robot formulation to a stable representation of three dimensional motions of soft robots, under Piecewise Constant Curvature hypothesis. In turn, the equivalence between soft-bodied and rigid robots permits to derive effective adaptive controllers for soft-bodied robots, achieving perfect posture regulation under considerable errors in the knowledge of …

0209 industrial biotechnologyControl and OptimizationAdaptive controlKinematicsComputer scienceSoft roboticsSoft roboticsKinematicsSolid modeling02 engineering and technologyComputer Science::Robotics03 medical and health sciences020901 industrial engineering & automationSettore ING-INF/04 - AutomaticaControl theoryRobustness (computer science)0202 electrical engineering electronic engineering information engineeringRepresentation (mathematics)030304 developmental biologyComputingMethodologies_COMPUTERGRAPHICSrobotics0303 health sciencesbusiness.industrysoft robotsAdaptation modelsAdaptive controlRoboticsmodelinguncertain systems.Constant curvatureuncertain systemsControl and Systems EngineeringSolid modelingPiecewiseRobotflexible structuresThree-dimensional displays020201 artificial intelligence & image processingArtificial intelligencebusinessRobotsIEEE Control Systems Letters
researchProduct

Dynamic Modeling of Planar Multi-Link Flexible Manipulators

2021

A closed-form dynamic model of the planar multi-link flexible manipulator is presented. The assumed modes method is used with the Lagrangian formulation to obtain the dynamic equations of motion. Explicit equations of motion are derived for a three-link case assuming two modes of vibration for each link. The eigenvalue problem associated with the mass boundary conditions, which changes with the robot configuration and payload, is discussed. The time-domain simulation results and frequency-domain analysis of the dynamic model are presented to show the validity of the theoretical derivation.

0209 industrial biotechnologyControl and OptimizationComputer science02 engineering and technology020901 industrial engineering & automationPlanarArtificial IntelligenceNormal modeControl theoryVDP::Teknologi: 500::Maskinfag: 570TJ1-15700202 electrical engineering electronic engineering information engineeringMechanical engineering and machineryBoundary value problemEigenvalues and eigenvectorsroboticsOscillationmodesMechanical Engineering020208 electrical & electronic engineeringPayload (computing)Equations of motionmodelingoscillationVibrationflexibilityvibrationRobotics
researchProduct

Dynamic Modeling, Energy Analysis, and Path Planning of Spherical Robots on Uneven Terrains

2020

Spherical robots are generally comprised of a spherical shell and an internal actuation unit. These robots have a variety of applications ranging from search and rescue to agriculture. Although one of the main advantages of spherical robots is their capability to operate on uneven surfaces, energy analysis and path planning of such systems have been studied only for flat terrains. This work introduces a novel approach to evaluate the dynamic equations, energy consumption, and separation analysis of these robots rolling on uneven terrains. The presented dynamics modeling, separation analysis, and energy analysis allow us to implement path planning algorithms to find an optimal path. One of t…

0209 industrial biotechnologyControl and OptimizationComputer science0211 other engineering and technologiesBiomedical EngineeringTerrain02 engineering and technologySpherical shellComputer Science::RoboticsVehicle dynamics020901 industrial engineering & automationArtificial IntelligenceMotion planningSearch and rescueComputingMethodologies_COMPUTERGRAPHICS021106 design practice & managementMechanical EngineeringPropellerControl engineeringEnergy consumptionComputer Science ApplicationsSystem dynamicsHuman-Computer InteractionControl and Systems EngineeringPath (graph theory)RobotComputer Vision and Pattern RecognitionIEEE Robotics and Automation Letters
researchProduct

An Input Observer-Based Stiffness Estimation Approach for Flexible Robot Joints

2020

This letter addresses the stiffness estimation problem for flexible robot joints, driven by variable stiffness actuators in antagonistic setups. Due to the difficulties of achieving consistent production of these actuators and the time-varying nature of their internal flexible elements, which are subject to plastic deformation over time, it is currently a challenge to precisely determine the total flexibility torque applied to a robot's joint and the corresponding joint stiffness. Herein, by considering the flexibility torque acting on each motor as an unknown signal and building upon Unknown Input Observer theory, a solution for electrically-driven actuators is proposed, which consists of …

0209 industrial biotechnologyControl and OptimizationFlexibility (anatomy)Observer (quantum physics)Computer scienceBiomedical Engineering02 engineering and technologyCalibration and identificationComputer Science::Robotics020901 industrial engineering & automationArtificial IntelligenceControl theorymedicineTorqueFlexible RobotMechanical Engineeringnatural machine motionStiffness021001 nanoscience & nanotechnologyComputer Science ApplicationsHuman-Computer Interactionmedicine.anatomical_structureControl and Systems EngineeringJoint stiffnessRobotComputer Vision and Pattern Recognitionmedicine.symptomDeformation (engineering)0210 nano-technologyActuatorfailure detection and recoveryIEEE Robotics and Automation Letters
researchProduct

Using the Analytic Hierarchy Process (AHP) in Evaluating the Decision of Moving to a Manufacturing Process Based Upon Continuous 5 Axes CNC Machine-t…

2016

Abstract This paper represents the second part of the work described in the paper with the title “Decision-making tool for moving from 3-axes to 5-axes CNC machine-tool”. The problem of using either 3 axes CNC machine-tools or 5 axes CNC machine tools was presented in the first part, together with a fuzzy logic based decision support tool. This time, an AHP approach is used in order to evaluate the decision of moving to a manufacturing process based upon 5 axes machine tools. Three variants were taken into consideration and analysed. The consistency of the proposed approach was evaluated and a sensitivity analysis was also introduced.

0209 industrial biotechnologyDecision support system5 axesbusiness.product_categoryComputer scienceAnalytic hierarchy processcosts02 engineering and technologyFuzzy logicanalytic hierarchy processevaluationConsistency (database systems)020901 industrial engineering & automationMachiningCNC machine-tool0202 electrical engineering electronic engineering information engineeringSensitivity (control systems)General Environmental ScienceaccuracyIndustrial engineeringMachine tool3 axesNumerical controlGeneral Earth and Planetary Sciences020201 artificial intelligence & image processingbusinessmachiningProcedia Computer Science
researchProduct

Assembly Assistance System with Decision Trees and Ensemble Learning

2021

This paper presents different prediction methods based on decision tree and ensemble learning to suggest possible next assembly steps. The predictor is designed to be a component of a sensor-based assembly assistance system whose goal is to provide support via adaptive instructions, considering the assembly progress and, in the future, the estimation of user emotions during training. The assembly assistance station supports inexperienced manufacturing workers, but it can be useful in assisting experienced workers, too. The proposed predictors are evaluated on the data collected in experiments involving both trainees and manufacturing workers, as well as on a mixed dataset, and are compared …

0209 industrial biotechnologyDecision support systemComputer scienceDecision treetraining stations02 engineering and technologyTP1-1185Machine learningcomputer.software_genreBiochemistryArticleAnalytical Chemistry020901 industrial engineering & automationPrediction methodsComponent (UML)decision tree0202 electrical engineering electronic engineering information engineeringassembly assistance systemsElectrical and Electronic EngineeringInstrumentationbusiness.industryChemical technologyNoveltyContrast (statistics)Ensemble learningAtomic and Molecular Physics and Opticsensemble learning020201 artificial intelligence & image processingSupport systemArtificial intelligencebusinesscomputerdecision support systemsSensors
researchProduct

Propulsion monitoring system for digitized ship management: Preliminary results from a case study

2020

Abstract The paradigm of Industry 4.0 a fundamental driver of innovation in marine industry, where the new digital era will see the development of smart cyber-ships equipped with advanced automation systems that will progressively evolve towards fully autonomous vessels. Although the journey towards such technological frontier has started, most companies operating in the maritime sector still appear un-prepared to face the future scenario. In the maritime sector, in fact, empirical models and oversimplified approaches are still largely employed for the management of fleet operations. There is thus the necessity of developing and providing operative models for digitized ship management, whic…

0209 industrial biotechnologyDecision support systemShip managementcontinuous engine monitoring systemsmart shipbusiness.industryDigital eraComputer scienceMonitoring systemContext (language use)02 engineering and technologyPropulsionIndustry 4.0AutomationGeneralLiterature_MISCELLANEOUSIndustrial and Manufacturing Engineering020303 mechanical engineering & transports020901 industrial engineering & automation0203 mechanical engineeringRisk analysis (engineering)Artificial IntelligenceOrder (exchange)Settore ING-IND/17 - Impianti Industriali Meccanicibusiness
researchProduct