Search results for "Artificial neural network"

showing 10 items of 694 documents

Online detection of rem sleep based on the comprehensive evaluation of short adjacent eeg segments by artificial neural networks

1997

Abstract 1. 1. For scientific and clinical requirements the present objective is a robust automatic online algorithm to detect rapid eye movement (REM) steep from single channel sleep EEG data without using EMG or EOG information. 2. 2. For data preprocessing 20 seconds time periods of the continuous EEG activity are digitally filtered in 7 frequency bands. Then the RMS values of these filtered signals are calculated along segments of 2.5 seconds. The resulting matrix of RMS values is representing information on the power of the signal localized in time and frequency and serves as input to an artificial neural network. A pooled set of EEG data together with the corresponding manual evaluati…

AdultMaleTime FactorsChannel (digital image)Sleep REMWord error rateElectroencephalographyOnline SystemsSignalmedicineHumansWakefulnessOnline algorithmBiological PsychiatryPharmacologymedicine.diagnostic_testArtificial neural networkbusiness.industryReproducibility of ResultsEye movementElectroencephalographyPattern recognitionNeural Networks ComputerSleep StagesData pre-processingArtificial intelligencePsychologybusinessAlgorithmsProgress in Neuro-Psychopharmacology and Biological Psychiatry
researchProduct

Automatic detection and quantification of ground-glass opacities on high-resolution CT using multiple neural networks: comparison with a density mask.

2000

We compared multiple neural networks with a density mask for the automatic detection and quantification of ground-glass opacities on high-resolution CT under clinical conditions.Eighty-four patients (54 men and 30 women; age range, 18-82 years; mean age, 49 years) with a total of 99 consecutive high-resolution CT scans were enrolled in the study. The neural network was designed to detect ground-glass opacities with high sensitivity and to omit air-tissue interfaces to increase specificity. The results of the neural network were compared with those of a density mask (thresholds, -750/-300 H), with a radiologist serving as the gold standard.The neural network classified 6% of the total lung a…

AdultMalemedicine.medical_specialtyOpacityAdolescentPulmonary FibrosisHigh resolutionSensitivity and SpecificityRadiographic image interpretationAbsorptiometry PhotonPredictive Value of TestsmedicineImage Processing Computer-AssistedHumansRadiology Nuclear Medicine and imagingProspective StudiesLungAgedAged 80 and overArtificial neural networkbusiness.industryFollow up studiesMean ageGeneral MedicinePneumoniaMiddle AgedSurgeryLung diseaseRadiographic Image Interpretation Computer-AssistedFemaleTomographyNeural Networks ComputerNuclear medicinebusinessTomography X-Ray ComputedFollow-Up StudiesAJR. American journal of roentgenology
researchProduct

Neural Network for Estimating Energy Expenditure in Paraplegics from Heart Rate

2014

The aim of the present study is to obtain models for estimating energy expenditure based on the heart rates of people with spinal cord injury without requiring individual calibration. A cohort of 20 persons with spinal cord injury performed a routine of 10 activities while their breath-by-breath oxygen consumption and heart rates were monitored. The minute-by-minute oxygen consumption collected from minute 4 to minute 7 was used as the dependent variable. A total of 7 features extracted from the heart rate signals were used as independent variables. 2 mathematical models were used to estimate the oxygen consumption using the heart rate: a multiple linear model and artificial neural networks…

Adultmedicine.medical_specialtyCalibration (statistics)Computer sciencemedia_common.quotation_subjectOxygen consumptionPhysical Therapy Sports Therapy and RehabilitationSpinal cord injuryOxygen ConsumptionGoodness of fitHeart RateStatisticsHeart ratemedicineHumansOrthopedics and Sports MedicineSpinal cord injurymedia_commonParaplegiaVariablesArtificial neural networkMathematical modelPhysical activityLinear modelmedicine.diseaseLinear ModelsPhysical therapyNeural Networks ComputerFittingEnergy MetabolismMATEMATICA APLICADAInternational Journal of Sports Medicine
researchProduct

Comparative study to predict toxic modes of action of phenols from molecular structures.

2013

Quantitative structure-activity relationship models for the prediction of mode of toxic action (MOA) of 221 phenols to the ciliated protozoan Tetrahymena pyriformis using atom-based quadratic indices are reported. The phenols represent a variety of MOAs including polar narcotics, weak acid respiratory uncouplers, pro-electrophiles and soft electrophiles. Linear discriminant analysis (LDA), and four machine learning techniques (ML), namely k-nearest neighbours (k-NN), support vector machine (SVM), classification trees (CTs) and artificial neural networks (ANNs), have been used to develop several models with higher accuracies and predictive capabilities for distinguishing between four MOAs. M…

Antiprotozoal AgentsQuantitative Structure-Activity RelationshipBioengineeringMachine learningcomputer.software_genreConstant false alarm ratePhenolsArtificial IntelligenceDrug DiscoveryTraining setModels StatisticalArtificial neural networkCiliated protozoanMolecular StructureChemistrybusiness.industryTetrahymena pyriformisGeneral MedicineLinear discriminant analysisSupport vector machineTest setTetrahymena pyriformisMolecular MedicineArtificial intelligenceNeural Networks ComputerBiological systembusinesscomputerSAR and QSAR in environmental research
researchProduct

Machine learning for rapid mapping of archaeological structures made of dry stones – Example of burial monuments from the Khirgisuur culture, Mongoli…

2020

11 pages; International audience; The present study proposes a workflow to extract from orthomosaics the enormous amount of dry stones used by past societies to construct funeral complexes in the Mongolian steppes. Several different machine learning algorithms for binary pixel classification (i.e. stone vs non-stone) were evaluated. Input features were extracted from high-resolution orthomosaics and digital elevation models (both derived from aerial imaging). Comparative analysis used two colour spaces (RGB and HSV), texture features (contrast, homogeneity and entropy raster maps), and the topographic position index, combined with nine supervised learning algorithms (nearest centroid, naive…

Archeology010504 meteorology & atmospheric sciences[SHS.ARCHEO]Humanities and Social Sciences/Archaeology and PrehistoryComputer scienceMaterials Science (miscellaneous)Topographic position index[SDV]Life Sciences [q-bio]ConservationMachine learningcomputer.software_genre01 natural sciences[SHS]Humanities and Social SciencesNaive Bayes classifierVector graphicsPixel classification[SCCO]Cognitive sciencePixel classification Grey level co-occurrence matrix RGB colour space Texture Topographic position index Photogrammetry Burial complex planigraphy Mongolia Bronze age Iron age0601 history and archaeologyTextureSpectroscopyRGB colour space0105 earth and related environmental sciencesBronze age060102 archaeologyArtificial neural networkbusiness.industryIron ageCentroidGrey level co-occurrence matrix06 humanities and the artscomputer.file_formatMongoliaArchaeologyRandom forestSupport vector machinePhotogrammetryChemistry (miscellaneous)Photogrammetry[SDE]Environmental SciencesBurial complex planigraphyArtificial intelligenceRaster graphicsbusinessGeneral Economics Econometrics and Financecomputer
researchProduct

Artificial neural network decision support tool for assessment of the energy performance and the refurbishment actions for the non-residential buildi…

2017

The public buildings sector represents one of the most intensive items of EU energy consumption; the application of retrofit solutions in existing buildings is a crucial way to reduce its impact. To facilitate the knowledge of the energy performance of existing non-residential buildings and the choice of the more adequate actions, Public Administrations (PA) should have the availability of proper tools. Within the Italian project "POI 2007-13", a database and a decision support tool, for easy use, even to a non-technical user, have been developed. A large set of data, obtained from the energy audits of 151 existing public buildings located in four regions of South Italy have been analysed, …

Architectural engineeringDecision support systemEngineeringDecision support tool020209 energyRetrofit action02 engineering and technologyAudit010501 environmental sciences01 natural sciencesCivil engineeringIndustrial and Manufacturing EngineeringEnergy auditEconomic indicator0202 electrical engineering electronic engineering information engineeringElectrical and Electronic EngineeringStock (geology)0105 earth and related environmental sciencesCivil and Structural EngineeringSettore ING-IND/11 - Fisica Tecnica AmbientaleArtificial neural networkbusiness.industryMechanical EngineeringEnergy performanceBuilding and ConstructionEnergy consumptionPollutionNon-residential buildingEnergy efficiencyGeneral EnergyANNbusinessEfficient energy useEnergy
researchProduct

Modeling the insect mushroom bodies: application to a delayed match-to-sample task.

2013

Despite their small brains, insects show advanced capabilities in learning and task solving. Flies, honeybees and ants are becoming a reference point in neuroscience and a main source of inspiration for autonomous robot design issues and control algorithms. In particular, honeybees demonstrate to be able to autonomously abstract complex associations and apply them in tasks involving different sensory modalities within the insect brain. Mushroom Bodies (MBs) are worthy of primary attention for understanding memory and learning functions in insects. In fact, even if their main role regards olfactory conditioning, they are involved in many behavioral achievements and learning capabilities, as …

Arthropod AntennaeInsectaComputer scienceCognitive Neurosciencemedia_common.quotation_subjectModels NeurologicalAction PotentialsInsectGrasshoppersOlfactory Receptor NeuronsTask (project management)03 medical and health sciences0302 clinical medicineStimulus modalityArtificial IntelligenceMemorymedicineLearningAnimalsComputer SimulationDrosophilaMushroom BodiesProblem Solving030304 developmental biologymedia_commonMatch-to-sample taskSpiking neural networkMotor Neurons0303 health sciencesArtificial neural networkbiologybusiness.industryInsect brain; Insect mushroom bodies; Learning; Neural model; Neuroscience; Spiking neurons; Action Potentials; Animals; Arthropod Antennae; Bees; Computer Simulation; Drosophila; Grasshoppers; Insecta; Memory; Motor Neurons; Mushroom Bodies; Nerve Net; Olfactory Receptor Neurons; Problem Solving; Artificial Intelligence; Models Neurological; Neural Networks ComputerBeesAutonomous robotbiology.organism_classificationInsect mushroom bodiesmedicine.anatomical_structureInsect brain; Insect mushroom bodies; LearningMushroom bodiesDrosophilaArtificial intelligenceNeural Networks ComputerNerve NetbusinessInsect brain030217 neurology & neurosurgeryNeuroanatomyNeural networks : the official journal of the International Neural Network Society
researchProduct

Artificial Neural Networks to Predict the Power Output of a PV Panel

2014

The paper illustrates an adaptive approach based on different topologies of artificial neural networks (ANNs) for the power energy output forecasting of photovoltaic (PV) modules. The analysis of the PV module’s power output needed detailed local climate data, which was collected by a dedicated weather monitoring system. The Department of Energy, Information Engineering, and Mathematical Models of the University of Palermo (Italy) has built up a weather monitoring system that worked together with a data acquisition system. The power output forecast is obtained using three different types of ANNs: a one hidden layer Multilayer perceptron (MLP), a recursive neural network (RNN), and a gamma m…

Article SubjectArtificial neural networkRenewable Energy Sustainability and the EnvironmentComputer scienceneural networklcsh:TJ807-830Computer Science::Neural and Evolutionary ComputationPhotovoltaic systemlcsh:Renewable energy sourcesControl engineeringGeneral ChemistrySolar irradianceNetwork topologyAtomic and Molecular Physics and OpticsBackpropagationphotovoltaicsRecurrent neural networkElectricity generationMultilayer perceptronneural networks; photovoltaicsGeneral Materials SciencePhysics::Atmospheric and Oceanic Physics
researchProduct

Robust adaptive neural backstepping control for a class of nonlinear systems with dynamic uncertainties

2014

Published version of an article in the journal: Abstract and Applied Analysis. Also available from the publisher at: http://dx.doi.org/10.1155/2014/658671 Open Access This paper is concerned with adaptive neural control of nonlinear strict-feedback systems with nonlinear uncertainties, unmodeled dynamics, and dynamic disturbances. To overcome the difficulty from the unmodeled dynamics, a dynamic signal is introduced. Radical basis function (RBF) neural networks are employed to model the packaged unknown nonlinearities, and then an adaptive neural control approach is developed by using backstepping technique. The proposed controller guarantees semiglobal boundedness of all the signals in the…

Article SubjectArtificial neural networklcsh:MathematicsApplied MathematicsSIGNAL (programming language)Basis functionAnalysis; Applied Mathematicslcsh:QA1-939Class (biology)VDP::Mathematics and natural science: 400::Mathematics: 410::Analysis: 411Nonlinear systemControl theoryBacksteppingNeural controlAnalysisMathematics
researchProduct

Methodological advances in brain connectivity

2012

Determining how distinct neurons or brain regions are connected and communicate with each other is a crucial point in neuroscience, as it allows to investigate how the functional integration of specialized neural populations enables the emergence of coherent cognitive and behavioral states. The general concept of brain connectivity encompasses different aspects: structural connectivity is related to the description of anatomical pathways and synaptic connections; functional connectivity investigates statistical dependencies between spatially separated brain regions; effective connectivity refers to models aimed at elucidating driver-response relationships. The study of these different modes…

Article SubjectImmunology and Microbiology (all)Computer scienceModels NeurologicalNeurophysiologyElectroencephalographylcsh:Computer applications to medicine. Medical informaticsMachine learningcomputer.software_genreModels BiologicalBrain mappingGeneral Biochemistry Genetics and Molecular BiologySynchronization (computer science)medicineHumansNeuronsConnectivityBrain MappingComputational modelBiochemistry Genetics and Molecular Biology (all)Quantitative Biology::Neurons and CognitionGeneral Immunology and MicrobiologyArtificial neural networkFunctional integration (neurobiology)medicine.diagnostic_testbusiness.industryModeling and Simulation; Biochemistry Genetics and Molecular Biology (all); Immunology and Microbiology (all); Applied MathematicsApplied MathematicsBrainComputational BiologyMagnetoencephalographyElectroencephalographyGeneral MedicineMagnetoencephalographyEditorialModeling and SimulationMultivariate AnalysisSettore ING-INF/06 - Bioingegneria Elettronica E Informaticalcsh:R858-859.7Transfer entropyArtificial intelligenceNetworksbusinesscomputerSoftware
researchProduct