Search results for "Artificial"
showing 10 items of 7394 documents
Real-time human collision detection for industrial robot cells
2017
A collision detection system triggering on human motion was developed using the Robot Operating System (ROS) and the Point Cloud Library (PCL). ROS was used as the core of the programs and for the communication with an industrial robot. Combining the depths fields from the 3D cameras was accomplished by the use of PCL. The library was also the underlying tool for segmenting the human from the registrated point clouds. Benchmarking of several collision algorithms was done in order to compare the solution. The registration process gave satisfactory results when testing the repetitiveness and the accuracy of the implementation. The segmentation algorithm was able to segment a person represente…
3D Point Cloud Descriptor for Posture Recognition
2018
International audience
Multiple Fault Diagnosis of Electric Powertrains Under Variable Speeds Using Convolutional Neural Networks
2018
Electric powertrains are widely used in automotive and renewable energy industries. Reliable diagnosis for defects in the critical components such as bearings, gears and stator windings, is important to prevent failures and enhance the system reliability and power availability. Most of existing fault diagnosis methods are based on specific characteristic frequencies to single faults at constant speed operations. Once multiple faults occur in the system, such a method may not detect the faults effectively and may give false alarms. Furthermore, variable speed operations render a challenge of analysing nonstationary signals. In this work, a deep learning-based fault diagnosis method is propos…
Quality Assessment of Reconstruction and Relighting from RTI Images: Application to Manufactured Surfaces
2019
In this paper, we propose to evaluate the quality of the reconstruction and relighting from images acquired by a Reflectance Transformation Imaging (RTI) device. Three relighting models, namely the PTM, HSH and DMD, are evaluated using PSNR and SSIM. A visual assessment of how the reconstructed surfaces are perceived is also carried out through a sensory experiment. This study allows to estimate the relevance of these models to reproduce the appearance of the manufactured surfaces. It also shows that DMD reproduces the most accurate reconstruction/relighting to an acquired measurement and that a higher sampling density don't mean necessarily a higher perceptual quality.
Automatic mass spectra recognition for Ultra High Vacuum systems using multilabel classification
2021
Abstract In Ultra High-Vacuum (UHV) systems it is common to find a mixture of many gases originating from surface outgassing, leaks and permeation that contaminate vacuum chambers and cause issues to reach ultimate pressures. The identification of these contaminants is, in general, done manually by trained technicians from the analysis of mass spectra. This task is time consuming and can lead to misinterpretation or partial understanding of issues. The challenge resides in the rapid identification of these contaminants by using some automatic gas identification technique. This paper explores the automatic and simultaneous identification of 80 molecules, including some of the most commonly p…
Static and Dynamic Objects Analysis as a 3D Vector Field
2017
International audience; In the context of scene modelling, understanding, and landmark-based robot navigation, the knowledge of static scene parts and moving objects with their motion behaviours plays a vital role. We present a complete framework to detect and extract the moving objects to reconstruct a high quality static map. For a moving 3D camera setup, we propose a novel 3D Flow Field Analysis approach which accurately detects the moving objects using only 3D point cloud information. Further, we introduce a Sparse Flow Clustering approach to effectively and robustly group the motion flow vectors. Experiments show that the proposed Flow Field Analysis algorithm and Sparse Flow Clusterin…
Homography based egomotion estimation with a common direction
2017
International audience; In this paper, we explore the different minimal solutions for egomotion estimation of a camera based on homography knowing the gravity vector between calibrated images. These solutions depend on the prior knowledge about the reference plane used by the homography. We then demonstrate that the number of matched points can vary from two to three and that a direct closed-form solution or a Gröbner basis based solution can be derived according to this plane. Many experimental results on synthetic and real sequences in indoor and outdoor environments show the efficiency and the robustness of our approach compared to standard methods.
Robust adaptive tracking control of uncertain systems with time-varying input delays
2017
ABSTRACTIn this paper, the problem of robust adaptive tracking control of uncertain systems with time-varying input delays is studied. Under some mild assumptions, a robust adaptive controller is designed by using adaptive backstepping technique such that the system is globally stable and the system output can track a given reference signal. At the same time, a root mean square type of bound is obtained for the tracking error as a function of design parameters and thus can be adjusted. Finally, one numerical example is given to show the effectiveness of the proposed scheme.
Adaptive Control of Soft Robots Based on an Enhanced 3D Augmented Rigid Robot Matching
2021
Despite having proven successful in generating precise motions under dynamic conditions in highly deformable soft-bodied robots, model based techniques are also prone to robustness issues connected to the intrinsic uncertain nature of the dynamics of these systems. This letter aims at tackling this challenge, by extending the augmented rigid robot formulation to a stable representation of three dimensional motions of soft robots, under Piecewise Constant Curvature hypothesis. In turn, the equivalence between soft-bodied and rigid robots permits to derive effective adaptive controllers for soft-bodied robots, achieving perfect posture regulation under considerable errors in the knowledge of …
Dynamic Modeling of Planar Multi-Link Flexible Manipulators
2021
A closed-form dynamic model of the planar multi-link flexible manipulator is presented. The assumed modes method is used with the Lagrangian formulation to obtain the dynamic equations of motion. Explicit equations of motion are derived for a three-link case assuming two modes of vibration for each link. The eigenvalue problem associated with the mass boundary conditions, which changes with the robot configuration and payload, is discussed. The time-domain simulation results and frequency-domain analysis of the dynamic model are presented to show the validity of the theoretical derivation.