Search results for "Atomic force microscopy"

showing 10 items of 208 documents

High-Density Arrays of Germanium Nanowire Photoresistors

2006

Here we present for the first time a study of the photoresistive properties and dynamics of ordered, high-density arrays of germanium nanowire photoresistors. Germanium is a wellknown semiconducting material with an indirect bandgap, Eg, of approximately 0.66 eV (temperature T = 300 K) and has been widely used for the fabrication of photodetectors, radiation detectors, charged particle and photon tracking devices, far-infrared photoresistors, and numerous other devices. During the last few years there has also been increasing interest in the use of nanostructures (quantum dots and wires) of both germanium and silicon as materials for potential applications in sensors, nanophotonics, and nan…

Materials scienceSiliconbusiness.industryMechanical EngineeringPhotoconductivityNanowirechemistry.chemical_elementGermaniumConductive atomic force microscopyIndium tin oxideSemiconductorNanoelectronicschemistryMechanics of MaterialsOptoelectronicsGeneral Materials SciencebusinessAdvanced Materials
researchProduct

Microscopic observation of unworn siloxane-hydrogel soft contact lenses by atomic force microscopy

2006

In the present study, samples of lotrafilcon A, balafilcon A, and galyfilcon A contact lenses were observed by atomic force microscopy (AFM) in tapping mode at areas ranging from 0.25 to 400 m2. Mean roughness (Ra), root-mean-square roughness (Rms) and maximum roughness (Rmax) in nanometers were obtained for the three lens materials at different magnifications. The three contact lenses showed significantly different surface topography. However, roughness values were dependent of the surface area to be analyzed. For a 1 m2 area, statistics revealed a significantly more irregular surface of balafilcon A (Ra = 6.44 nm; Rms = 8.30 nm; Rmax = 96.82 nm) compared with lotrafilcon A (Ra = 2.40 nm; …

Materials scienceSiloxanesSurface PropertiesBiomedical EngineeringNanotechnology02 engineering and technologyMicroscopy Atomic ForceHydrogel Polyethylene Glycol DimethacrylateBiomaterialsAtomic force microscopy03 medical and health scienceschemistry.chemical_compoundSurface roughness0302 clinical medicineMaterials TestingSurface roughnessHumansScience & TechnologyAtomic force microscopyContact Lenses Hydrophilic021001 nanoscience & nanotechnologySiloxane-hydrogel contact lenses3. Good healthMicroscopic observationchemistrySiloxaneWettability030221 ophthalmology & optometry0210 nano-technologyJournal of Biomedical Materials Research Part B: Applied Biomaterials
researchProduct

Mechanical recycling of polylactide, upgrading trends and combination of valorization techniques

2016

[EN] The upcoming introduction of polylactides in the fractions of polymer waste encourages technologists to ascertain its valorization at the best quality conditions. Mechanical recycling of PLA represents one of the most cost-effective methodologies, but the recycled materials are usually directed to downgraded applications, due to the inherent thermomechanical degradation affecting its mechanical, thermal and rheological performance. In this review, the current state of mechanical recycling of PLA is reported, with special emphasis on a multi-scale comparison among different studies. Additionally, the applications of physical and chemical upgrading strategies, as well as the chances to b…

Materials scienceSolucions polimèriquesBiopolymerPolymers and PlasticsGeneral Physics and AstronomyValorization02 engineering and technologyReview010402 general chemistryPolymer waste01 natural sciencesDegradationMaterials ChemistryForensic engineeringRecyclingProcess engineeringbusiness.industryAtomic force microscopyOrganic ChemistryTermoplàstics021001 nanoscience & nanotechnology0104 chemical sciencesUpgradingReprocessingPolylactide (PLA)MAQUINAS Y MOTORES TERMICOS0210 nano-technologybusiness
researchProduct

Nanogoniometry with scanning force microscopy: a model study of CdTe thin films.

2007

In this paper scanning force microscopy is combined with simple but powerful data processing to determine quantitatively, on a sub-micrometer scale, the orientation of surface facets present on crystalline materials. A high-quality scanning force topography image is used to determine an angular histogram of the surface normal at each image point. In addition to the known method for the assignment of Miller indices to the facets appearing on the surface, a quantitative analysis is presented that allows the characterization of the relative population and morphological quality of each of these facets. Two different CdTe thin films are used as model systems to probe the capabilities of this met…

Materials scienceSurface PropertiesPopulationMolecular Conformation550 - Earth sciencesScanning capacitance microscopyMicroscopy Atomic ForceBiomaterialsOpticsMaterials TestingCadmium CompoundsNanotechnologyGeneral Materials ScienceParticle SizeThin filmeducationeducation.field_of_studyCrystallographybusiness.industryOrientation (computer vision)Resolution (electron density)Membranes ArtificialGeneral ChemistryConductive atomic force microscopyNanostructuresCharacterization (materials science)Scanning ion-conductance microscopyTelluriumbusinessBiotechnology
researchProduct

Diacetylene Linked Anthracene Oligomers Synthesized by One-Shot Homocoupling of Trimethylsilyl on Cu(111)

2018

On-surface chemical reaction has become a very powerful technique to conjugate small precursor molecules and several reactions have been proposed with the aim to fabricate functional nanostructures on surfaces. Here we present an unforeseen adsorption mode of 9,10-bis-((trimethylsilyl)ethynyl)anthracene on a Cu(111)surface and the resulting one-shot desilylative homocoupling of of the adsorbate by annealing at 400 K. With a combination of high-resolution atomic force microscopy and density functional theory calculations, we found that the triple bonds and silicon atoms of the monomer chemically interact with the copper surface. After the oligomerization, we discovered that the anthracene un…

Materials scienceTrimethylsilylta221General Physics and Astronomy02 engineering and technology010402 general chemistryPhotochemistry01 natural sciencesChemical reactionchemistry.chemical_compoundAdsorptionMoleculeGeneral Materials Scienceon-surface chemical reactionAnthraceneatomic force microscopyDiacetyleneanthraceneGlaser couplingGeneral Engineeringtrimethylsilyl021001 nanoscience & nanotechnologyTriple bond0104 chemical sciencesMonomerchemistry0210 nano-technologyACS Nano
researchProduct

Influence of the chemical dissolution of MnS inclusions on the composition of passive films and the local electrochemical behaviour of stainless stee…

2006

Abstract Immersion of stainless steel containing MnS inclusions in aqueous electrolytes leads to the chemical dissolution of these heterogeneities. Chemical dissolution of MnS inclusions in 1M NaCl, pH=3 was studied using in-situ AFM and the dissolution rate of MnS was estimated between 0.04 and 0.19 μm 3 /min. The local electrochemical measurements reveal that the chemical dissolution of MnS inclusions promotes pitting corrosion. Similary, chemical dissolution of MnS inclusions in IM NaClO 4 , pH=3 solution modified the surface close to the inclusions by the presence of FeSO 4 in the passive film.

Materials scienceX-ray photoelectron spectroscopyChemical engineeringAtomic force microscopyMetallurgyPitting corrosionComposition (visual arts)Aqueous electrolyteElectrochemistryDissolutionChemical dissolution
researchProduct

Ambipolar MoS2 Transistors by Nanoscale Tailoring of Schottky Barrier Using Oxygen Plasma Functionalization

2017

One of the main challenges to exploit molybdenum disulfide (MoS2) potentialities for the next-generation complementary metal oxide semiconductor (CMOS) technology is the realization of p-type or ambipolar field-effect transistors (FETs). Hole transport in MoS2 FETs is typically hampered by the high Schottky barrier height (SBH) for holes at source/drain contacts, due to the Fermi level pinning close to the conduction band. In this work, we show that the SBH of multilayer MoS2 surface can be tailored at nanoscale using soft O-2 plasma treatments. The morphological, chemical, and electrical modifications of MoS2 surface under different plasma conditions were investigated by several microscopi…

Materials scienceambipolar transistorsSchottky barrierDFT calculationNanotechnology02 engineering and technologyDFT calculations01 natural scienceschemistry.chemical_compoundX-ray photoelectron spectroscopy0103 physical sciencesScanning transmission electron microscopyGeneral Materials ScienceSchottky barrierMolybdenum disulfide010302 applied physicsAmbipolar diffusionElectron energy loss spectroscopyConductive atomic force microscopy021001 nanoscience & nanotechnologyconductive atomic force microscopyatomic resolution STEMchemistryambipolar transistorSurface modificationMaterials Science (all)0210 nano-technologyMoS2
researchProduct

Environmental chamber for an atomic force microscope.

2007

A commercial atomic force microscope (AFM), originally designed for operation in ambient conditions, was placed inside a compact aluminum chamber, which can be pumped down to high vacuum levels or filled with a desired gaseous atmosphere, including humidity, up to normal pressure. The design of this environmental AFM is such that minimal intrusion is made to the original setup, which can be restored easily. The performance inside the environmental chamber is similar to the original version.

Materials sciencebusiness.industryAtomic force microscopyEnvironmental chamberUltra-high vacuumchemistry.chemical_elementHumidityHumidityConductive atomic force microscopyMicroscopy Atomic Forcelaw.inventionOpticsPressure measurementchemistryAluminiumlawPressureGasesComposite materialbusinessInstrumentationNon-contact atomic force microscopyComputer Science::DatabasesAluminumThe Review of scientific instruments
researchProduct

Detection of defects buried in metallic samples by scanning microwave microscopy

2011

This paper reports the local detection of buried calibrated metal defects in metal samples by a new experimental technique, scanning microwave microscopy. This technique combines the electromagnetic measurement capabilities of a microwave vector network analyzer with the subnanometer-resolution capabilities of an atomic force microscope. The network analyzer authorizes the use of several frequencies in the range 1--6 GHz, allowing three-dimensional tomographical investigation, which is useful for the detection of bulk defects in metal materials.

Materials sciencebusiness.industryAtomic force microscopyResolution (electron density)Condensed Matter PhysicsNetwork analyzer (electrical)Electromagnetic radiationElectronic Optical and Magnetic MaterialsMetalOpticsNondestructive testingvisual_artMicroscopyvisual_art.visual_art_mediumbusinessMicrowavePhysical Review B
researchProduct

2021

Gold-assisted mechanical exfoliation currently represents a promising method to separate ultralarge (centimeter scale) transition metal dichalcogenide (TMD) monolayers (1L) with excellent electronic and optical properties from the parent van der Waals (vdW) crystals. The strong interaction between Au and chalcogen atoms is key to achieving this nearly perfect 1L exfoliation yield. On the other hand, it may significantly affect the doping and strain of 1L TMDs in contact with Au. In this paper, we systematically investigated the morphology, strain, doping, and electrical properties of large area 1L MoS2 exfoliated on ultraflat Au films (0.16-0.21 nm roughness) and finally transferred to an i…

Materials sciencebusiness.industryDopingHeterojunction02 engineering and technologySubstrate (electronics)Conductive atomic force microscopy010402 general chemistry021001 nanoscience & nanotechnology01 natural sciencesExfoliation joint0104 chemical sciencessymbols.namesakeMonolayersymbolsOptoelectronicsGeneral Materials ScienceElectrical measurements0210 nano-technologyRaman spectroscopybusinessACS Applied Materials & Interfaces
researchProduct