Search results for "Automation"

showing 10 items of 1181 documents

Energy minimization of single input orbit transfer by averaging and continuation

2006

AbstractThis article deals with the transfer between Keplerian coplanar orbits using low propulsion. We focus on the energy minimization problem and compute the averaged system, proving integrability and relating the corresponding trajectories to a three-dimensional Riemannian problem that is analyzed in details. The geodesics provide approximations of the extremals of the energy minimization problem and can be used in order to evaluate the optimal trajectories of the time optimal and the minimization of the consumption problems with continuation methods. In particular, minimizing trajectories for transfer towards the geostationary orbit can be approximated in suitable coordinates by straig…

[ MATH.MATH-OC ] Mathematics [math]/Optimization and Control [math.OC]0209 industrial biotechnologyMathematics(all)GeodesicGeneral MathematicsMoyennation02 engineering and technologyPropulsionEnergy minimization01 natural sciencesContinuationAveraging020901 industrial engineering & automation0101 mathematicsMinimisation de l'énergieComputingMilieux_MISCELLANEOUSMathematicsTransfert orbital à poussée faibleMéthodes de continuation010102 general mathematicsMathematical analysis[MATH.MATH-OC] Mathematics [math]/Optimization and Control [math.OC]Orbital transfer with low thrustEnergy minimizationContinuation methodsOrbit (dynamics)Geostationary orbit[MATH.MATH-OC]Mathematics [math]/Optimization and Control [math.OC]MinificationFocus (optics)
researchProduct

Conjugate times for smooth singular trajectories and bang-bang extremals

2003

Abstract In this paper we discuss the problem of estimating conjugate times along smooth singular or bang-bang extremals. For smooth extremals conjugate times can be defined in the generic case by using the intrinsic second order derivative or the exponential mapping. An algorithm is given which was implemented in the SR-case to compute the caustic [1] or in recent applied problems [5],[9]. We investigate briefly the problem of using this algorithm in the bang-bang case by smoothing the corners of extremals

[ MATH.MATH-OC ] Mathematics [math]/Optimization and Control [math.OC]0209 industrial biotechnologyPhysics::General Physics010102 general mathematicsMathematical analysis[MATH.MATH-OC] Mathematics [math]/Optimization and Control [math.OC]02 engineering and technology01 natural sciences020901 industrial engineering & automationExponential mappingCaustic (optics)[MATH.MATH-OC]Mathematics [math]/Optimization and Control [math.OC]0101 mathematicsBang bangBang–bang controlSmoothingMathematicsConjugateSecond derivative
researchProduct

Non subanalyticity of sub-Riemannian Martinet spheres

2001

Abstract Consider the sub-Riemannian Martinet structure (M,Δ,g) where M= R 3 , Δ= Ker ( d z− y 2 2 d x) and g is the general gradated metric of order 0 : g=(1+αy) 2 d x 2 +(1+βx+γy) 2 d y 2 . We prove that if α≠0 then the sub-Riemannian spheres S(0,r) with small radii are not subanalytic.

[ MATH.MATH-OC ] Mathematics [math]/Optimization and Control [math.OC]0209 industrial biotechnologyRiemann manifoldRiemann surface010102 general mathematicsMathematical analysis[MATH.MATH-OC] Mathematics [math]/Optimization and Control [math.OC]02 engineering and technologyGeneral Medicine01 natural sciencesCombinatoricssymbols.namesake020901 industrial engineering & automationsymbolsOrder (group theory)SPHERES[MATH.MATH-OC]Mathematics [math]/Optimization and Control [math.OC]0101 mathematicsMathematics
researchProduct

Optimal control of an ensemble of Bloch equations with applications in MRI

2016

International audience; The optimal control of an ensemble of Bloch equations describing the evolution of an ensemble of spins is the mathematical model used in Nuclear Resonance Imaging and the associated costs lead to consider Mayer optimal control problems. The Maximum Principle allows to parameterize the optimal control and the dynamics is analyzed in the framework of geometric optimal control. This lead to numerical implementations or suboptimal controls using averaging principle.

[ MATH.MATH-OC ] Mathematics [math]/Optimization and Control [math.OC]0209 industrial biotechnologySpins010102 general mathematicsNuclear resonance[MATH.MATH-OC] Mathematics [math]/Optimization and Control [math.OC]02 engineering and technologyOptimal controlLinear-quadratic-Gaussian control01 natural sciences020901 industrial engineering & automationMaximum principleControl theoryBloch equationsApplied mathematics[MATH.MATH-OC]Mathematics [math]/Optimization and Control [math.OC]Boundary value problem0101 mathematicsComputingMilieux_MISCELLANEOUSMathematics2016 IEEE 55th Conference on Decision and Control (CDC)
researchProduct

Regularization of chattering phenomena via bounded variation controls

2018

In control theory, the term chattering is used to refer to strong oscillations of controls, such as an infinite number of switchings over a compact interval of times. In this paper we focus on three typical occurences of chattering: the Fuller phenomenon, referring to situations where an optimal control switches an infinite number of times over a compact set; the Robbins phenomenon, concerning optimal control problems with state constraints, meaning that the optimal trajectory touches the boundary of the constraint set an infinite number of times over a compact time interval; the Zeno phenomenon, referring as well to an infinite number of switchings over a compact set, for hybrid optimal co…

[ MATH.MATH-OC ] Mathematics [math]/Optimization and Control [math.OC]0209 industrial biotechnologyState constraintsBoundary (topology)02 engineering and technologyInterval (mathematics)01 natural sciences020901 industrial engineering & automationShooting methodConvergence (routing)FOS: MathematicsApplied mathematicsHybrid problems0101 mathematicsElectrical and Electronic EngineeringMathematics - Optimization and ControlMathematicsTotal variation010102 general mathematics[MATH.MATH-OC] Mathematics [math]/Optimization and Control [math.OC]Optimal controlComputer Science ApplicationsControllabilityControl and Systems EngineeringOptimization and Control (math.OC)Chattering controlBounded variationTrajectory[MATH.MATH-OC]Mathematics [math]/Optimization and Control [math.OC]Fuller phenomenon
researchProduct

Conjugate and cut loci of a two-sphere of revolution with application to optimal control

2008

Abstract The objective of this article is to present a sharp result to determine when the cut locus for a class of metrics on a two-sphere of revolution is reduced to a single branch. This work is motivated by optimal control problems in space and quantum dynamics and gives global optimal results in orbital transfer and for Lindblad equations in quantum control.

[ MATH.MATH-OC ] Mathematics [math]/Optimization and Control [math.OC]0209 industrial biotechnologyWork (thermodynamics)Class (set theory)Quantum dynamicsCut locus02 engineering and technologySpace (mathematics)01 natural sciencesspace and quantum mechanicsoptimal control020901 industrial engineering & automationconjugate and cut loci0101 mathematics2-spheres of revolutionMathematical PhysicsMathematicsApplied Mathematics010102 general mathematicsMathematical analysis[MATH.MATH-OC] Mathematics [math]/Optimization and Control [math.OC]53C20; 53C21; 49K15; 70Q05Optimal controlMetric (mathematics)[MATH.MATH-OC]Mathematics [math]/Optimization and Control [math.OC]Orbital maneuverAnalysis
researchProduct

Geometric optimal control of elliptic Keplerian orbits

2005

This article deals with the transfer of a satellite between Keplerian orbits. We study the controllability properties of the system and make a preliminary analysis of the time optimal control using the maximum principle. Second order sufficient conditions are also given. Finally, the time optimal trajectory to transfer the system from an initial low orbit with large eccentricity to a terminal geostationary orbit is obtained numerically.

[ MATH.MATH-OC ] Mathematics [math]/Optimization and Control [math.OC]Physics0209 industrial biotechnologyApplied Mathematicsmedia_common.quotation_subject010102 general mathematicsMathematical analysis[MATH.MATH-OC] Mathematics [math]/Optimization and Control [math.OC]02 engineering and technologyOptimal control01 natural sciencesControllability020901 industrial engineering & automationMaximum principleOrbit (dynamics)Geostationary orbitDiscrete Mathematics and CombinatoricsSatellite[MATH.MATH-OC]Mathematics [math]/Optimization and Control [math.OC]Astrophysics::Earth and Planetary Astrophysics0101 mathematicsOrbital maneuverEccentricity (behavior)media_commonDiscrete & Continuous Dynamical Systems - B
researchProduct

Minimum Time Control of the Restricted Three-Body Problem

2012

The minimum time control of the circular restricted three-body problem is considered. Controllability is proved on an adequate submanifold. Singularities of the extremal flow are studied by means of a stratification of the switching surface. Properties of homotopy maps in optimal control are framed in a simple case. The analysis is used to perform continuations on the two parameters of the problem: The ratio of the masses, and the magnitude of the control.

[ MATH.MATH-OC ] Mathematics [math]/Optimization and Control [math.OC]Surface (mathematics)0209 industrial biotechnologyControl and OptimizationApplied MathematicsHomotopy010102 general mathematicsMathematical analysis[MATH.MATH-OC] Mathematics [math]/Optimization and Control [math.OC]02 engineering and technologyThree-body problemOptimal controlSubmanifold01 natural sciencesControllability020901 industrial engineering & automationSimple (abstract algebra)Gravitational singularity[MATH.MATH-OC]Mathematics [math]/Optimization and Control [math.OC]0101 mathematicsMathematicsSIAM Journal on Control and Optimization
researchProduct

Methodology for assessment of measuring uncertainties of articulated arm coordinates measuring machine

2014

International audience; The Articulated Arm Coordinate Measuring Machines (AACMM) have gradually evolved and are increasingly used in mechanic industry. At present, measurement uncertainties relating to the use of these devices are not yet well-quantified. The work carried out consists on determining the measurement uncertainties of a mechanical part by an Articulated Arm Coordinate Measuring Machine. The studies aiming to develop a model of measurement uncertainties are based on the Monte Carlo method developed in Supplement 1 of the Guide to Expression of Uncertainty in Measurement [1] but also identifying and characterizing the main sources of uncertainty. A Multi-level Monte Carlo appro…

[ SPI.MECA.GEME ] Engineering Sciences [physics]/Mechanics [physics.med-ph]/Mechanical engineering [physics.class-ph]0209 industrial biotechnologyComputer scienceApplied MathematicsMonte Carlo methodWork (physics)Uncertainty[PHYS.MECA.GEME]Physics [physics]/Mechanics [physics]/Mechanical engineering [physics.class-ph]Monte Carlo SimulationControl engineering02 engineering and technologyCoordinate-measuring machineArticulated Arm Coordinate Measuring Machine01 natural sciencesExpression (mathematics)[SPI.MECA.GEME]Engineering Sciences [physics]/Mechanics [physics.med-ph]/Mechanical engineering [physics.class-ph]010309 optics020901 industrial engineering & automation0103 physical sciences[ PHYS.MECA.GEME ] Physics [physics]/Mechanics [physics]/Mechanical engineering [physics.class-ph]CalibrationMeasurement uncertaintyPoint (geometry)InstrumentationEngineering (miscellaneous)
researchProduct

3D part inspection path planning of a laser scanner with control on the uncertainty

2011

International audience; This article concerns the measurement process of mechanical parts using laser scanners. From the point of view of industrial applications, the objective is to guarantee the measurement accuracy during the scanning with regard to the geometrical product specifications. The proposed method can be summarized as follow: the first step consists of analyzing the interval of tolerance for the different specifications and to attribute to every geometrical entity a maximal uncertainty of measurement. This uncertainty depends on the angle of incidence between the laser plane and the scanned surface. In the second step, an approach based on the concept of visibility is used fro…

[ SPI.MECA.GEME ] Engineering Sciences [physics]/Mechanics [physics.med-ph]/Mechanical engineering [physics.class-ph]0209 industrial biotechnologyEngineeringLaser scanningPoint cloud[PHYS.MECA.GEME]Physics [physics]/Mechanics [physics]/Mechanical engineering [physics.class-ph]02 engineering and technologyInterval (mathematics)01 natural sciencesIndustrial and Manufacturing Engineeringthree-dimensional inspectionlaser sensor010309 optics020901 industrial engineering & automation0103 physical sciencesComputer visionPoint (geometry)Motion planninguncertainties of measurementbusiness.industryscanning pathVisibility (geometry)visibilityComputer Graphics and Computer-Aided DesignComputer Science ApplicationsMetrology[SPI.MECA.GEME]Engineering Sciences [physics]/Mechanics [physics.med-ph]/Mechanical engineering [physics.class-ph][ PHYS.MECA.GEME ] Physics [physics]/Mechanics [physics]/Mechanical engineering [physics.class-ph]Measurement uncertaintyArtificial intelligencebusiness
researchProduct