Search results for "Ayer"

showing 10 items of 2767 documents

Thermal and structural modeling of the Scillato wedge-top basin source-to-sink system. Insights into the Sicilian fold-and-thrust belt evolution (Ita…

2019

AbstractTemperature-dependent clay mineral assemblages, vitrinite reflectance, and one-dimensional (1-D) thermal and three-dimensional (3-D) geological modeling of a Neogene wedge-top basin in the Sicilian fold-and-thrust belt and its pre-orogenic substratum allowed us to: (1) define the burial history of the sedimentary succession filling the wedge-top basin and its substratum, (2) reconstruct the wedge-top basin geometry, depocenter migration, and sediment provenance through time in the framework of a source-to-sink system, and (3) shed new light into the kinematic evolution of the Apennine-Maghrebian fold-and-thrust belt.The pre-orogenic substratum of the Scillato basin shows an increase…

010504 meteorology & atmospheric sciencesmixed layers illite-smectiteStratigraphyCenozoic deformation[SDU.STU]Sciences of the Universe [physics]/Earth SciencesReflectionStructural basin010502 geochemistry & geophysics01 natural sciencesWedge (geometry)Paleontologywedge-top basin; vitrinite reflectance; mixed layers illite-smectite; thermal modelling; source-to-sink systems; Sicilian fold-and-thrust beltSicilian fold-and-thrust beltThermalthermal modellingClay mineralSedimentologySource to sinkEurope faultsvitrinite reflectancesource-to-sink systems0105 earth and related environmental sciencesMesozoic sedimentary rocks tectonicsgeographygeography.geographical_feature_categoryFaultingGeologySedimentology15. Life on landwedge-top basinlanguage.human_languageStratigraphyFold and thrust beltlanguageThree dimensional computer graphicsSicilianGeologyTertiary
researchProduct

Globorotalia truncatulinoides in Central - Western Mediterranean Sea during the Little Ice Age

2020

Abstract Globorotalia truncatulinoides oscillations have been recorded from different marine sediment cores collected in the central and western Mediterranean Sea. The abundances of this species over the last 500 yrs. demonstrates its potential value as bio-indicator of particular oceanographic condition during the Maunder Minimum (MM) event of the Little Ice Age (LIA). The comparison between the G. truncatulinoides abundance patterns of the Balearic Basin, central and south Tyrrhenian Sea and central and eastern Sicily Channel allows to highlight a similar response of this species during the MM event in the central-western Mediterranean Sea. The ecological meanings of this species and its …

010506 paleontology010504 meteorology & atmospheric sciencesMaunder MinimumMixed layerGloborotalia trucatulinoidesStructural basinOceanography01 natural sciencesMediterranean seaGloborotalia truncatulinoides Little Ice Age Maunder minimum Mediterranean Sea Mixed layerAbundance (ecology)Mixed layer14. Life underwater0105 earth and related environmental sciencesgeographygeography.geographical_feature_categoryAdvectionPaleontologySedimentSettore GEO/01 - Paleontologia E PaleoecologiaGloborotalia truncatulinoidesOceanographyProductivity (ecology)13. Climate actionMediterranean seaLittle Ice AgeGloborotalia truncatulinoides; Maunder minimum; Little Ice AgeGeologyChannel (geography)
researchProduct

2019

The inner membrane-associated protein of 30 kDa (IM30, also known as Vipp1) is required for thylakoid membrane biogenesis and maintenance in cyanobacteria and chloroplasts. The protein forms large rings of ∼2 MDa and triggers membrane fusion in presence of Mg2+. Based on the here presented observations, IM30 rings are built from dimers of dimers, and formation of these tetrameric building blocks is driven by interactions of the central coiled-coil, formed by helices 2 and 3, and stabilized via additional interactions mainly involving helix 1. Furthermore, helix 1 as well as C-terminal regions of IM30 together negatively regulate ring-ring contacts. We propose that IM30 rings represent the i…

0106 biological sciences0301 basic medicineChemistryLipid bilayer fusionPlant ScienceRing (chemistry)01 natural sciences03 medical and health sciences030104 developmental biologyMembraneThylakoidMembrane biogenesisHelixBiophysicsLipid bilayerBiogenesis010606 plant biology & botanyFrontiers in Plant Science
researchProduct

GIPC: Glycosyl Inositol Phospho Ceramides, the major sphingolipids on earth

2016

What are the most abundant sphingolipids on earth? The answer is Glycosyl Inositol Phosphoryl Ceramides (GIPCs) present in fungi and the green lineage. In this review, we discuss the putative role of plant GIPCs in the lipid bilayer asymmetry, in the lateral organization of membrane rafts and in the very long chain fatty acid inter-leaflet coupling of lipids in the plant plasma membrane (PM). A special focus on the structural similarities -and putative functions- of GIPCs is discussed by comparison with animal gangliosides, structural homologs of plant GIPCs.

0106 biological sciences0301 basic medicineGlycosylationGlycosylationVery long chain fatty acidPlant ScienceBiologyCeramidesModels Biological01 natural sciencesCell wall03 medical and health scienceschemistry.chemical_compoundMembrane MicrodomainsPlant defense against herbivoryAnimalsGlycosylInositolLipid bilayerSphingolipidsMini-ReviewPlantsSphingolipid030104 developmental biologychemistryBiochemistrylipids (amino acids peptides and proteins)010606 plant biology & botanyPlant Signaling & Behavior
researchProduct

The Nonbilayer Lipid MGDG and the Major Light-Harvesting Complex (LHCII) Promote Membrane Stacking in Supported Lipid Bilayers.

2018

The thylakoid membrane of algae and land plants is characterized by its intricate architecture, comprising tightly appressed membrane stacks termed grana. The contributions of individual components to grana stack formation are not yet fully elucidated. As an in vitro model, we use supported lipid bilayers made of thylakoid lipid mixtures to study the effect of major light-harvesting complex (LHCII), different lipids, and ions on membrane stacking, seen as elevated structures forming on top of the planar membrane surface in the presence of LHCII protein. These structures were examined by confocal laser scanning microscopy, atomic force microscopy, and fluorescence recovery after photobleachi…

0106 biological sciences0301 basic medicineMicroscopy ConfocalChemistryLipid BilayersStackingLight-Harvesting Protein ComplexesPeasfood and beveragesFluorescence recovery after photobleachingMicroscopy Atomic Force01 natural sciencesBiochemistryLight-harvesting complexDiglycerides03 medical and health sciences030104 developmental biologyGlycolipidMembraneThylakoidConfocal laser scanning microscopyBiophysicslipids (amino acids peptides and proteins)Lipid bilayer010606 plant biology & botanyBiochemistry
researchProduct

Functional Implications of Multiple IM30 Oligomeric States

2019

The inner membrane-associated protein of 30 kDa (IM30), also known as the vesicle-inducing protein in plastids 1 (Vipp1), is essential for photo-autotrophic growth of cyanobacteria, algae and higher plants. While its exact function still remains largely elusive, it is commonly accepted that IM30 is crucially involved in thylakoid membrane biogenesis, stabilization and/or maintenance. A characteristic feature of IM30 is its intrinsic propensity to form large homo-oligomeric protein complexes. 15 years ago, it has been reported that these supercomplexes have a ring-shaped structure. However, the in vivo significance of these ring structures is not finally resolved yet and the formation of mor…

0106 biological sciences0301 basic medicinePspAmembrane dynamicsmembrane fusionPlant ScienceReviewlcsh:Plant culture01 natural sciencesVipp103 medical and health sciencesMembrane dynamicslcsh:SB1-1110PlastidChemistryLipid bilayer fusionthylakoid membraneCell biology030104 developmental biologyThylakoidheat shock proteinsmembrane stabilizationFunction (biology)BiogenesisIM30010606 plant biology & botanyFrontiers in Plant Science
researchProduct

Evaporation from soils of different texture covered by layers of water repellent and wettable soils

2020

Water repellent soils are able to channel water deep into the soil profile by fingered flow, minimising water storage in the water repellent top layer where water is most susceptible to evaporation. To date, the effect of water repellent or wettable surface layer on evaporation from wet sublayer has only been reported for coarse materials, and an increase in water repellency led to a greater delay in water evaporation. The objective of this study was to assess the effect of water repellent vs. wettable top layers with different thickness on water evaporation from coarse and fine texture subsoils that were pre-moistened. Clay loam soil samples were taken from Pinus pinaster woodland of Ciavo…

0106 biological sciences0301 basic medicineSoil testSettore AGR/13 - Chimica AgrariaEvaporationEvaporationDuffSoil sciencePlant Science01 natural sciencesBiochemistry03 medical and health sciencesSoilGeneticsSettore AGR/08 - Idraulica Agraria E Sistemazioni Idraulico-ForestaliSurface layerMolecular BiologyEcology Evolution Behavior and SystematicsbiologyWater storageCell Biologybiology.organism_classificationPineWater repellency030104 developmental biologyLoamSoil waterEnvironmental sciencePinus pinasterSoil horizonAnimal Science and Zoology010606 plant biology & botany
researchProduct

The IM30/Vipp1 C-terminus associates with the lipid bilayer and modulates membrane fusion.

2017

IM30/Vipp1 proteins are crucial for thylakoid membrane biogenesis in chloroplasts and cyanobacteria. A characteristic C-terminal extension distinguishes these proteins from the homologous bacterial PspA proteins, and this extension has been discussed to be key for the IM30/Vipp1 activity. Here we report that the extension of the Synechocystis IM30 protein is indispensable, and argue that both, the N-terminal PspA-domain as well as the C-terminal extension are needed in order for the IM30 protein to conduct its in vivo function. In vitro, we show that the PspA-domain of IM30 is vital for stability/folding and oligomer formation of IM30 as well as for IM30-triggered membrane fusion. In contra…

0106 biological sciences0301 basic medicineVesicle-associated membrane protein 8ChloroplastsLipid BilayersBiophysicsBiology01 natural sciencesBiochemistryMembrane FusionThylakoidsArticle03 medical and health sciencesBacterial ProteinsProtein DomainsIntegral membrane proteinMembranesMembrane transport proteinPeripheral membrane proteinSynechocystisLipid bilayer fusionMembrane ProteinsCell BiologyCell biology030104 developmental biologyMembrane proteinMembrane biogenesisbiology.protein010606 plant biology & botanyMembrane Fusion ActivityProtein BindingBiochimica et biophysica acta. Bioenergetics
researchProduct

2018

One of the most relevant characteristics of the extant Southern Ocean fauna is its resiliency to survive glacial processes of the Quaternary. These climatic events produced catastrophic habitat reductions and forced some marine benthic species to move, adapt or go extinct. The marine benthic species inhabiting the Antarctic upper continental shelf faced the Quaternary glaciations with different strategies that drastically modified population sizes and thus affected the amount and distribution of intraspecific genetic variation. Here we present new genetic information for the most conspicuous regular sea urchin of the Antarctic continental shelf, Sterechinus neumayeri. We studied the pattern…

0106 biological sciences0301 basic medicineeducation.field_of_studyGenetic diversityMultidisciplinarygeography.geographical_feature_categorybiologyEcologyContinental shelfPopulationSpecies diversityLast Glacial Maximumbiology.organism_classification010603 evolutionary biology01 natural sciences03 medical and health sciences030104 developmental biologyGeographyRefugium (population biology)Genetic structureSterechinus neumayeri14. Life underwatereducationPLOS ONE
researchProduct

Purification, characterization and influence on membrane properties of the plant-specific sphingolipids GIPC

2020

AbstractThe plant plasma membrane (PM) is an essential barrier between the cell and the external environment. The PM is crucial for signal perception and transmission. It consists of an asymmetrical lipid bilayer made up of three different lipid classes: sphingolipids, sterols and phospholipids. The most abundant sphingolipids in the plant PM are the Glycosyl Inositol Phosphoryl Ceramides (GIPCs), representing up to 40% of total sphingolipids, assumed to be almost exclusively in the outer leaflet of the PM. In this study, we investigated the structure of GIPCs and their role in membrane organization. Since GIPCs are not commercially available, we developed a protocol to extract and isolate …

0106 biological sciences0303 health sciencesGlycanbiology[SDV]Life Sciences [q-bio]Conjugated system01 natural sciencesSphingolipid[SDV] Life Sciences [q-bio]03 medical and health scienceschemistry.chemical_compoundMembranechemistryBiochemistryMonolayerbiology.proteinlipids (amino acids peptides and proteins)GlycosylInositolLipid bilayer030304 developmental biology010606 plant biology & botany
researchProduct